transformers/tests/models/gpt2/test_modeling_tf_gpt2.py
Yih-Dar 19420fd99e
Move test model folders (#17034)
* move test model folders (TODO: fix imports and others)

* fix (potentially partially) imports (in model test modules)

* fix (potentially partially) imports (in tokenization test modules)

* fix (potentially partially) imports (in feature extraction test modules)

* fix import utils.test_modeling_tf_core

* fix path ../fixtures/

* fix imports about generation.test_generation_flax_utils

* fix more imports

* fix fixture path

* fix get_test_dir

* update module_to_test_file

* fix get_tests_dir from wrong transformers.utils

* update config.yml (CircleCI)

* fix style

* remove missing imports

* update new model script

* update check_repo

* update SPECIAL_MODULE_TO_TEST_MAP

* fix style

* add __init__

* update self-scheduled

* fix add_new_model scripts

* check one way to get location back

* python setup.py build install

* fix import in test auto

* update self-scheduled.yml

* update slack notification script

* Add comments about artifact names

* fix for yolos

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-03 14:42:02 +02:00

594 lines
24 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import GPT2Config, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPT2Tokenizer
from transformers.models.gpt2.modeling_tf_gpt2 import (
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGPT2DoubleHeadsModel,
TFGPT2ForSequenceClassification,
TFGPT2LMHeadModel,
TFGPT2Model,
)
from transformers.tf_utils import shape_list
class TFGPT2ModelTester:
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_token_type_ids = True
self.use_input_mask = True
self.use_labels = True
self.use_mc_token_ids = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
self.bos_token_id = self.vocab_size - 1
self.eos_token_id = self.vocab_size - 1
self.pad_token_id = self.vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = GPT2Config(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
return_dict=True,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2Model(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
inputs = [input_ids, None, input_mask] # None is the input for 'past'
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2Model(config=config)
# first forward pass
outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
output, past = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
# append to next input_ids and token_type_ids
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
# select random slice
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_gpt2_model_attention_mask_past(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
model = TFGPT2Model(config=config)
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
# select random slice
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)
def create_and_check_gpt2_model_past_large_inputs(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
model = TFGPT2Model(config=config)
input_ids = input_ids[:1, :]
input_mask = input_mask[:1, :]
token_type_ids = token_type_ids[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True)
output, past = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size)
# append to next input_ids and token_type_ids
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
output_from_no_past = model(
next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
)["last_hidden_state"]
output_from_past = model(
next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past=past
)["last_hidden_state"]
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2LMHeadModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_gpt2_xla_generate_fast(self, config, input_ids, *args):
config.eos_token_id = None
config.max_length = 10
model = TFGPT2LMHeadModel(config=config)
# make sure there are no pad tokens in prompt
input_ids = tf.where(input_ids != config.pad_token_id, input_ids, config.pad_token_id - 1)
generated = model.generate(input_ids)
generate_xla = tf.function(model.generate, jit_compile=True)
generated_xla = generate_xla(input_ids)
self.parent.assertListEqual(generated.numpy().tolist(), generated_xla.numpy().tolist())
def create_and_check_gpt2_double_head(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
):
model = TFGPT2DoubleHeadsModel(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"mc_token_ids": mc_token_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
)
self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
def create_and_check_gpt2_for_sequence_classification(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
):
config.num_labels = self.num_labels
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"labels": sequence_labels,
}
model = TFGPT2ForSequenceClassification(config)
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, unittest.TestCase):
all_model_classes = (
(TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel)
if is_tf_available()
else ()
)
all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
test_head_masking = False
test_onnx = True
onnx_min_opset = 10
def setUp(self):
self.model_tester = TFGPT2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_gpt2_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
def test_gpt2_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)
def test_gpt2_model_att_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)
def test_gpt2_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)
def test_gpt2_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)
def test_gpt2_xla_generate_fast(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_xla_generate_fast(*config_and_inputs)
def test_gpt2_double_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert name is None
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
def test_gpt2_sequence_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFGPT2Model.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_tf
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_greedy_distilgpt2_batch_special(self):
model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
sentences = ["Today is a beautiful day and", "Yesterday was"]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids
generation_kwargs = {
"bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
"no_repeat_ngram_size": 2,
"do_sample": False,
"repetition_penalty": 1.3,
}
output_ids = model.generate(input_ids, **generation_kwargs)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
expected_output_string = [
"Today is a beautiful day and I am so happy to be able take part in this amazing event.",
"Yesterday was a very busy day for the first time since I started writing this post",
]
self.assertListEqual(output_strings, expected_output_string)
@slow
def test_lm_generate_sample_distilgpt2_batch_special(self):
model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
sentences = ["Today is a beautiful day and", "Yesterday was"]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids
generation_kwargs = {
"do_sample": True,
"bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
"no_repeat_ngram_size": 2,
"repetition_penalty": 1.3,
"temperature": 1.5,
"top_k": 500,
"top_p": 0.9,
"seed": [42, 0], # seed set -> deterministic sampling sequence -> deterministic generation
}
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0"):
output_ids = model.generate(input_ids, **generation_kwargs)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
expected_output_string = [
"Today is a beautiful day and we will make you feel very hot/terrific in all",
"Yesterday was another solid success as news coverage became standard American domestic television hit.",
]
self.assertListEqual(output_strings, expected_output_string)
@slow
def test_lm_generate_greedy_distilgpt2_beam_search_special(self):
model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
sentences = ["Today is a beautiful day and", "Yesterday was"]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids
generation_kwargs = {
"bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
"no_repeat_ngram_size": 2,
"do_sample": False,
"num_beams": 2,
}
output_ids = model.generate(input_ids, **generation_kwargs)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
expected_output_string = [
"Today is a beautiful day and a great day for all of us.\n\nIm",
"Yesterday was the first day of the year for the second time in a row,",
]
self.assertListEqual(output_strings, expected_output_string)
@slow
def test_lm_generate_gpt2_greedy_xla(self):
# TODO (Joao): convert this to an example with a batch size>1 with different input lengths that works (and fix
# the underlying problem)
model = TFGPT2LMHeadModel.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
sentences = ["The dog"]
expected_output_strings = [
"The dog was found in a field near the intersection of West and West Streets.\n\nThe dog",
]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids
output_ids = model.generate(input_ids, do_sample=False)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
self.assertListEqual(output_strings, expected_output_strings)
xla_generate = tf.function(model.generate, jit_compile=True)
output_ids = xla_generate(input_ids, do_sample=False)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
self.assertListEqual(output_strings, expected_output_strings)
@slow
def test_lm_generate_gpt2_sample_xla(self):
# NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same
# output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible
# and that we can seed both versions.
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0"):
model = TFGPT2LMHeadModel.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
sentence = ["The dog"]
expected_output_string = [
"The dog owner asked why did our vet decide there needed to be extra ventilation inside because most puppies"
]
expected_output_string_xla = [
"The dog has been named in connection with the murder of a 20-year-old man in!"
]
input_ids = tokenizer(sentence, return_tensors="tf", padding=True).input_ids
output_ids = model.generate(input_ids, do_sample=True, seed=[7, 0])
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
self.assertListEqual(output_strings, expected_output_string)
xla_generate = tf.function(model.generate, jit_compile=True)
output_ids = xla_generate(input_ids, do_sample=True, seed=[7, 0])
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
self.assertListEqual(output_strings, expected_output_string_xla)