# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import GPT2Config, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPT2Tokenizer from transformers.models.gpt2.modeling_tf_gpt2 import ( TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, TFGPT2DoubleHeadsModel, TFGPT2ForSequenceClassification, TFGPT2LMHeadModel, TFGPT2Model, ) from transformers.tf_utils import shape_list class TFGPT2ModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.bos_token_id = self.vocab_size - 1 self.eos_token_id = self.vocab_size - 1 self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = GPT2Config( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=True, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) inputs = [input_ids, None, input_mask] # None is the input for 'past' result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_gpt2_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPT2Model(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12) def create_and_check_gpt2_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPT2Model(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] token_type_ids = token_type_ids[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past=past )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2LMHeadModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_gpt2_xla_generate_fast(self, config, input_ids, *args): config.eos_token_id = None config.max_length = 10 model = TFGPT2LMHeadModel(config=config) # make sure there are no pad tokens in prompt input_ids = tf.where(input_ids != config.pad_token_id, input_ids, config.pad_token_id - 1) generated = model.generate(input_ids) generate_xla = tf.function(model.generate, jit_compile=True) generated_xla = generate_xla(input_ids) self.parent.assertListEqual(generated.numpy().tolist(), generated_xla.numpy().tolist()) def create_and_check_gpt2_double_head( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args ): model = TFGPT2DoubleHeadsModel(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "mc_token_ids": mc_token_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices)) def create_and_check_gpt2_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "labels": sequence_labels, } model = TFGPT2ForSequenceClassification(config) result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, unittest.TestCase): all_model_classes = ( (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel) if is_tf_available() else () ) all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else () test_head_masking = False test_onnx = True onnx_min_opset = 10 def setUp(self): self.model_tester = TFGPT2ModelTester(self) self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_gpt2_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model(*config_and_inputs) def test_gpt2_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs) def test_gpt2_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs) def test_gpt2_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs) def test_gpt2_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs) def test_gpt2_xla_generate_fast(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_xla_generate_fast(*config_and_inputs) def test_gpt2_double_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class in self.all_generative_model_classes: x = model.get_output_embeddings() assert isinstance(x, tf.keras.layers.Layer) name = model.get_bias() assert name is None else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None def test_gpt2_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFGPT2Model.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFGPT2ModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_greedy_distilgpt2_batch_special(self): model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["Today is a beautiful day and", "Yesterday was"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids generation_kwargs = { "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "do_sample": False, "repetition_penalty": 1.3, } output_ids = model.generate(input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = [ "Today is a beautiful day and I am so happy to be able take part in this amazing event.", "Yesterday was a very busy day for the first time since I started writing this post", ] self.assertListEqual(output_strings, expected_output_string) @slow def test_lm_generate_sample_distilgpt2_batch_special(self): model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["Today is a beautiful day and", "Yesterday was"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids generation_kwargs = { "do_sample": True, "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "repetition_penalty": 1.3, "temperature": 1.5, "top_k": 500, "top_p": 0.9, "seed": [42, 0], # seed set -> deterministic sampling sequence -> deterministic generation } # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): output_ids = model.generate(input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = [ "Today is a beautiful day and we will make you feel very hot/terrific in all", "Yesterday was another solid success as news coverage became standard American domestic television hit.", ] self.assertListEqual(output_strings, expected_output_string) @slow def test_lm_generate_greedy_distilgpt2_beam_search_special(self): model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["Today is a beautiful day and", "Yesterday was"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids generation_kwargs = { "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], "no_repeat_ngram_size": 2, "do_sample": False, "num_beams": 2, } output_ids = model.generate(input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = [ "Today is a beautiful day and a great day for all of us.\n\nI’m", "Yesterday was the first day of the year for the second time in a row,", ] self.assertListEqual(output_strings, expected_output_string) @slow def test_lm_generate_gpt2_greedy_xla(self): # TODO (Joao): convert this to an example with a batch size>1 with different input lengths that works (and fix # the underlying problem) model = TFGPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentences = ["The dog"] expected_output_strings = [ "The dog was found in a field near the intersection of West and West Streets.\n\nThe dog", ] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids output_ids = model.generate(input_ids, do_sample=False) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) xla_generate = tf.function(model.generate, jit_compile=True) output_ids = xla_generate(input_ids, do_sample=False) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_strings) @slow def test_lm_generate_gpt2_sample_xla(self): # NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same # output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible # and that we can seed both versions. # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): model = TFGPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" sentence = ["The dog"] expected_output_string = [ "The dog owner asked why did our vet decide there needed to be extra ventilation inside because most puppies" ] expected_output_string_xla = [ "The dog has been named in connection with the murder of a 20-year-old man in!" ] input_ids = tokenizer(sentence, return_tensors="tf", padding=True).input_ids output_ids = model.generate(input_ids, do_sample=True, seed=[7, 0]) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_string) xla_generate = tf.function(model.generate, jit_compile=True) output_ids = xla_generate(input_ids, do_sample=True, seed=[7, 0]) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(output_strings, expected_output_string_xla)