mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 22:00:09 +06:00

Some checks failed
Self-hosted runner (benchmark) / Benchmark (aws-g5-4xlarge-cache) (push) Waiting to run
Build documentation / build (push) Waiting to run
Slow tests on important models (on Push - A10) / Get all modified files (push) Waiting to run
Slow tests on important models (on Push - A10) / Slow & FA2 tests (push) Blocked by required conditions
Secret Leaks / trufflehog (push) Waiting to run
Update Transformers metadata / build_and_package (push) Waiting to run
New model PR merged notification / Notify new model (push) Has been cancelled
Self-hosted runner (push-caller) / Check if setup was changed (push) Has been cancelled
Self-hosted runner (push-caller) / build-docker-containers (push) Has been cancelled
Self-hosted runner (push-caller) / Trigger Push CI (push) Has been cancelled
* updated roberta model card * fixes suggested after reviewing --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
231 lines
8.5 KiB
Markdown
231 lines
8.5 KiB
Markdown
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
|
">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
# RoBERTa
|
|
|
|
[RoBERTa](https://huggingface.co/papers/1907.11692) improves BERT with new pretraining objectives, demonstrating [BERT](./bert) was undertrained and training design is important. The pretraining objectives include dynamic masking, sentence packing, larger batches and a byte-level BPE tokenizer.
|
|
|
|
You can find all the original RoBERTa checkpoints under the [Facebook AI](https://huggingface.co/FacebookAI) organization.
|
|
|
|
|
|
> [!TIP]
|
|
> Click on the RoBERTa models in the right sidebar for more examples of how to apply RoBERTa to different language tasks.
|
|
|
|
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipeline = pipeline(
|
|
task="fill-mask",
|
|
model="FacebookAI/roberta-base",
|
|
torch_dtype=torch.float16,
|
|
device=0
|
|
)
|
|
pipeline("Plants create <mask> through a process known as photosynthesis.")
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"FacebookAI/roberta-base",
|
|
)
|
|
model = AutoModelForMaskedLM.from_pretrained(
|
|
"FacebookAI/roberta-base",
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
predictions = outputs.logits
|
|
|
|
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
|
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
|
predicted_token = tokenizer.decode(predicted_token_id)
|
|
|
|
print(f"The predicted token is: {predicted_token}")
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="transformers CLI">
|
|
|
|
```bash
|
|
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model FacebookAI/roberta-base --device 0
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
## Notes
|
|
|
|
- RoBERTa doesn't have `token_type_ids` so you don't need to indicate which token belongs to which segment. Separate your segments with the separation token `tokenizer.sep_token` or `</s>`.
|
|
|
|
## RobertaConfig
|
|
|
|
[[autodoc]] RobertaConfig
|
|
|
|
## RobertaTokenizer
|
|
|
|
[[autodoc]] RobertaTokenizer
|
|
- build_inputs_with_special_tokens
|
|
- get_special_tokens_mask
|
|
- create_token_type_ids_from_sequences
|
|
- save_vocabulary
|
|
|
|
## RobertaTokenizerFast
|
|
|
|
[[autodoc]] RobertaTokenizerFast
|
|
- build_inputs_with_special_tokens
|
|
|
|
<frameworkcontent>
|
|
<pt>
|
|
|
|
## RobertaModel
|
|
|
|
[[autodoc]] RobertaModel
|
|
- forward
|
|
|
|
## RobertaForCausalLM
|
|
|
|
[[autodoc]] RobertaForCausalLM
|
|
- forward
|
|
|
|
## RobertaForMaskedLM
|
|
|
|
[[autodoc]] RobertaForMaskedLM
|
|
- forward
|
|
|
|
## RobertaForSequenceClassification
|
|
|
|
[[autodoc]] RobertaForSequenceClassification
|
|
- forward
|
|
|
|
## RobertaForMultipleChoice
|
|
|
|
[[autodoc]] RobertaForMultipleChoice
|
|
- forward
|
|
|
|
## RobertaForTokenClassification
|
|
|
|
[[autodoc]] RobertaForTokenClassification
|
|
- forward
|
|
|
|
## RobertaForQuestionAnswering
|
|
|
|
[[autodoc]] RobertaForQuestionAnswering
|
|
- forward
|
|
|
|
</pt>
|
|
<tf>
|
|
|
|
## TFRobertaModel
|
|
|
|
[[autodoc]] TFRobertaModel
|
|
- call
|
|
|
|
## TFRobertaForCausalLM
|
|
|
|
[[autodoc]] TFRobertaForCausalLM
|
|
- call
|
|
|
|
## TFRobertaForMaskedLM
|
|
|
|
[[autodoc]] TFRobertaForMaskedLM
|
|
- call
|
|
|
|
## TFRobertaForSequenceClassification
|
|
|
|
[[autodoc]] TFRobertaForSequenceClassification
|
|
- call
|
|
|
|
## TFRobertaForMultipleChoice
|
|
|
|
[[autodoc]] TFRobertaForMultipleChoice
|
|
- call
|
|
|
|
## TFRobertaForTokenClassification
|
|
|
|
[[autodoc]] TFRobertaForTokenClassification
|
|
- call
|
|
|
|
## TFRobertaForQuestionAnswering
|
|
|
|
[[autodoc]] TFRobertaForQuestionAnswering
|
|
- call
|
|
|
|
</tf>
|
|
<jax>
|
|
|
|
## FlaxRobertaModel
|
|
|
|
[[autodoc]] FlaxRobertaModel
|
|
- __call__
|
|
|
|
## FlaxRobertaForCausalLM
|
|
|
|
[[autodoc]] FlaxRobertaForCausalLM
|
|
- __call__
|
|
|
|
## FlaxRobertaForMaskedLM
|
|
|
|
[[autodoc]] FlaxRobertaForMaskedLM
|
|
- __call__
|
|
|
|
## FlaxRobertaForSequenceClassification
|
|
|
|
[[autodoc]] FlaxRobertaForSequenceClassification
|
|
- __call__
|
|
|
|
## FlaxRobertaForMultipleChoice
|
|
|
|
[[autodoc]] FlaxRobertaForMultipleChoice
|
|
- __call__
|
|
|
|
## FlaxRobertaForTokenClassification
|
|
|
|
[[autodoc]] FlaxRobertaForTokenClassification
|
|
- __call__
|
|
|
|
## FlaxRobertaForQuestionAnswering
|
|
|
|
[[autodoc]] FlaxRobertaForQuestionAnswering
|
|
- __call__
|
|
|
|
</jax>
|
|
</frameworkcontent>
|