mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 22:00:09 +06:00

* update model id * codec_model eval * add processor img * use ungated repo for processor tests
383 lines
11 KiB
Markdown
383 lines
11 KiB
Markdown
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
# Csm
|
|
|
|
## Overview
|
|
|
|
The Conversational Speech Model (CSM) is the first open-source contextual text-to-speech model [released by Sesame](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice). It is designed to generate natural-sounding speech with or without conversational context. This context typically consists of multi-turn dialogue between speakers, represented as sequences of text and corresponding spoken audio.
|
|
|
|
**Model Architecture:**
|
|
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi.md), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
|
|
|
|
The original csm-1b checkpoint is available under the [Sesame](https://huggingface.co/sesame/csm-1b) organization on Hugging Face.
|
|
|
|
<div class="flex justify-center">
|
|
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/csm_architecture.png"/>
|
|
</div>
|
|
|
|
## Usage Tips
|
|
|
|
### Without Conversational Context
|
|
|
|
CSM can be used to simply generate speech from a text prompt:
|
|
|
|
```python
|
|
import torch
|
|
from transformers import CsmForConditionalGeneration, AutoProcessor
|
|
|
|
model_id = "sesame/csm-1b"
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
# load the model and the processor
|
|
processor = AutoProcessor.from_pretrained(model_id)
|
|
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
|
|
|
|
# prepare the inputs
|
|
text = "[0]The past is just a story we tell ourselves." # `[0]` for speaker id 0
|
|
inputs = processor(text, add_special_tokens=True).to(device)
|
|
|
|
# another equivalent way to prepare the inputs
|
|
conversation = [
|
|
{"role": "0", "content": [{"type": "text", "text": "The past is just a story we tell ourselves."}]},
|
|
]
|
|
inputs = processor.apply_chat_template(
|
|
conversation,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
).to(device)
|
|
|
|
# infer the model
|
|
audio = model.generate(**inputs, output_audio=True)
|
|
processor.save_audio(audio, "example_without_context.wav")
|
|
```
|
|
|
|
### With Conversational Context
|
|
|
|
CSM can be used to generate speech given a conversation, allowing consistency in the voices and content-aware generation:
|
|
|
|
```python
|
|
import torch
|
|
from transformers import CsmForConditionalGeneration, AutoProcessor
|
|
from datasets import load_dataset, Audio
|
|
|
|
model_id = "sesame/csm-1b"
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
# load the model and the processor
|
|
processor = AutoProcessor.from_pretrained(model_id)
|
|
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
|
|
|
|
# prepare the inputs
|
|
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
|
# ensure the audio is 24kHz
|
|
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
|
|
conversation = []
|
|
|
|
# 1. context
|
|
for text, audio, speaker_id in zip(ds[:4]["text"], ds[:4]["audio"], ds[:4]["speaker_id"]):
|
|
conversation.append(
|
|
{
|
|
"role": f"{speaker_id}",
|
|
"content": [{"type": "text", "text": text}, {"type": "audio", "path": audio["array"]}],
|
|
}
|
|
)
|
|
|
|
# 2. text prompt
|
|
conversation.append({"role": f"{ds[4]['speaker_id']}", "content": [{"type": "text", "text": ds[4]["text"]}]})
|
|
|
|
inputs = processor.apply_chat_template(
|
|
conversation,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
).to(device)
|
|
|
|
# infer the model
|
|
audio = model.generate(**inputs, output_audio=True)
|
|
processor.save_audio(audio, "example_with_context.wav")
|
|
```
|
|
|
|
### Batched Inference
|
|
|
|
CSM supports batched inference!
|
|
|
|
```python
|
|
import torch
|
|
from transformers import CsmForConditionalGeneration, AutoProcessor
|
|
from datasets import load_dataset, Audio
|
|
|
|
model_id = "sesame/csm-1b"
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
# load the model and the processor
|
|
processor = AutoProcessor.from_pretrained(model_id)
|
|
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
|
|
|
|
# prepare the inputs
|
|
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
|
# ensure the audio is 24kHz
|
|
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
|
|
# here a batch with two prompts
|
|
conversation = [
|
|
[
|
|
{
|
|
"role": f"{ds[0]['speaker_id']}",
|
|
"content": [
|
|
{"type": "text", "text": ds[0]["text"]},
|
|
{"type": "audio", "path": ds[0]["audio"]["array"]},
|
|
],
|
|
},
|
|
{
|
|
"role": f"{ds[1]['speaker_id']}",
|
|
"content": [
|
|
{"type": "text", "text": ds[1]["text"]},
|
|
],
|
|
},
|
|
],
|
|
[
|
|
{
|
|
"role": f"{ds[0]['speaker_id']}",
|
|
"content": [
|
|
{"type": "text", "text": ds[0]["text"]},
|
|
],
|
|
}
|
|
],
|
|
]
|
|
inputs = processor.apply_chat_template(
|
|
conversation,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
).to(device)
|
|
|
|
audio = model.generate(**inputs, output_audio=True)
|
|
processor.save_audio(audio, [f"speech_batch_idx_{i}.wav" for i in range(len(audio))])
|
|
```
|
|
|
|
### Making The Model Go Brrr
|
|
|
|
CSM supports full-graph compilation with CUDA graphs!
|
|
|
|
```python
|
|
import torch
|
|
import copy
|
|
from transformers import CsmForConditionalGeneration, AutoProcessor
|
|
from datasets import load_dataset
|
|
|
|
model_id = "sesame/csm-1b"
|
|
device = "cuda"
|
|
|
|
# set logs to ensure no recompilation and graph breaks
|
|
torch._logging.set_logs(graph_breaks=True, recompiles=True, cudagraphs=True)
|
|
|
|
# load the model and the processor
|
|
processor = AutoProcessor.from_pretrained(model_id)
|
|
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
|
|
|
|
# use static cache, enabling automatically torch compile with fullgraph and reduce-overhead
|
|
model.generation_config.max_length = 250 # big enough to avoid recompilation
|
|
model.generation_config.max_new_tokens = None # would take precedence over max_length
|
|
model.generation_config.cache_implementation = "static"
|
|
model.depth_decoder.generation_config.cache_implementation = "static"
|
|
|
|
# generation kwargs
|
|
gen_kwargs = {
|
|
"do_sample": False,
|
|
"depth_decoder_do_sample": False,
|
|
"temperature": 1.0,
|
|
"depth_decoder_temperature": 1.0,
|
|
}
|
|
|
|
# Define a timing decorator
|
|
class TimerContext:
|
|
def __init__(self, name="Execution"):
|
|
self.name = name
|
|
self.start_event = None
|
|
self.end_event = None
|
|
|
|
def __enter__(self):
|
|
# Use CUDA events for more accurate GPU timing
|
|
self.start_event = torch.cuda.Event(enable_timing=True)
|
|
self.end_event = torch.cuda.Event(enable_timing=True)
|
|
self.start_event.record()
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.end_event.record()
|
|
torch.cuda.synchronize()
|
|
elapsed_time = self.start_event.elapsed_time(self.end_event) / 1000.0
|
|
print(f"{self.name} time: {elapsed_time:.4f} seconds")
|
|
|
|
# prepare the inputs
|
|
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
|
|
|
conversation = [
|
|
{
|
|
"role": f"{ds[0]['speaker_id']}",
|
|
"content": [
|
|
{"type": "text", "text": ds[0]["text"]},
|
|
{"type": "audio", "path": ds[0]["audio"]["array"]},
|
|
],
|
|
},
|
|
{
|
|
"role": f"{ds[1]['speaker_id']}",
|
|
"content": [
|
|
{"type": "text", "text": ds[1]["text"]},
|
|
{"type": "audio", "path": ds[1]["audio"]["array"]},
|
|
],
|
|
},
|
|
{
|
|
"role": f"{ds[2]['speaker_id']}",
|
|
"content": [
|
|
{"type": "text", "text": ds[2]["text"]},
|
|
],
|
|
},
|
|
]
|
|
|
|
padded_inputs_1 = processor.apply_chat_template(
|
|
conversation,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
).to(device)
|
|
|
|
print("\n" + "="*50)
|
|
print("First generation - compiling and recording CUDA graphs...")
|
|
with TimerContext("First generation"):
|
|
_ = model.generate(**padded_inputs_1, **gen_kwargs)
|
|
print("="*50)
|
|
|
|
print("\n" + "="*50)
|
|
print("Second generation - fast !!!")
|
|
with TimerContext("Second generation"):
|
|
_ = model.generate(**padded_inputs_1, **gen_kwargs)
|
|
print("="*50)
|
|
|
|
# now with different inputs
|
|
conversation = [
|
|
{
|
|
"role": f"{ds[0]['speaker_id']}",
|
|
"content": [
|
|
{"type": "text", "text": ds[2]["text"]},
|
|
{"type": "audio", "path": ds[2]["audio"]["array"]},
|
|
],
|
|
},
|
|
{
|
|
"role": f"{ds[1]['speaker_id']}",
|
|
"content": [
|
|
{"type": "text", "text": ds[3]["text"]},
|
|
{"type": "audio", "path": ds[3]["audio"]["array"]},
|
|
],
|
|
},
|
|
{
|
|
"role": f"{ds[2]['speaker_id']}",
|
|
"content": [
|
|
{"type": "text", "text": ds[4]["text"]},
|
|
],
|
|
},
|
|
]
|
|
padded_inputs_2 = processor.apply_chat_template(
|
|
conversation,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
).to(device)
|
|
|
|
print("\n" + "="*50)
|
|
print("Generation with other inputs!")
|
|
with TimerContext("Generation with different inputs"):
|
|
_ = model.generate(**padded_inputs_2, **gen_kwargs)
|
|
print("="*50)
|
|
```
|
|
|
|
### Training
|
|
|
|
CSM Transformers integration supports training!
|
|
|
|
```python
|
|
from transformers import CsmForConditionalGeneration, AutoProcessor
|
|
from datasets import load_dataset, Audio
|
|
|
|
model_id = "sesame/csm-1b"
|
|
device = "cuda"
|
|
|
|
# load the model and the processor
|
|
processor = AutoProcessor.from_pretrained(model_id)
|
|
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
|
|
model.train()
|
|
model.codec_model.eval()
|
|
|
|
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
|
# ensure the audio is 24kHz
|
|
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
|
|
conversation = []
|
|
|
|
# context
|
|
for text, audio, speaker_id in zip(ds[:4]["text"], ds[:4]["audio"], ds[:4]["speaker_id"]):
|
|
conversation.append(
|
|
{
|
|
"role": f"{speaker_id}",
|
|
"content": [{"type": "text", "text": text}, {"type": "audio", "path": audio["array"]}],
|
|
}
|
|
)
|
|
|
|
inputs = processor.apply_chat_template(
|
|
conversation,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
output_labels=True,
|
|
).to(device)
|
|
|
|
out = model(**inputs)
|
|
out.loss.backward()
|
|
```
|
|
|
|
This model was contributed by [Eustache Le Bihan](https://huggingface.co/eustlb).
|
|
The original code can be found [here](https://github.com/SesameAILabs/csm).
|
|
|
|
|
|
## CsmConfig
|
|
|
|
[[autodoc]] CsmConfig
|
|
|
|
## CsmDepthDecoderConfig
|
|
|
|
[[autodoc]] CsmDepthDecoderConfig
|
|
|
|
## CsmProcessor
|
|
|
|
<div class="flex justify-center">
|
|
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/fig1.jpg"/>
|
|
</div>
|
|
|
|
[[autodoc]] CsmProcessor
|
|
- __call__
|
|
|
|
## CsmForConditionalGeneration
|
|
|
|
[[autodoc]] CsmForConditionalGeneration
|
|
- forward
|
|
- generate
|
|
|
|
## CsmDepthDecoderForCausalLM
|
|
|
|
[[autodoc]] CsmDepthDecoderForCausalLM
|
|
|
|
## CsmDepthDecoderModel
|
|
|
|
[[autodoc]] CsmDepthDecoderModel
|
|
|
|
## CsmBackboneModel
|
|
|
|
[[autodoc]] CsmBackboneModel
|