transformers/docs/source/en/model_doc/mllama.md
Raushan Turganbay 17742bd9c8
🔴 [VLM] Add base model without head (#37033)
* i guessreverted all CdGen classes

* style

* llava onevision

* fix copies

* fix some tests

* some more tests

* dump

* skip these

* nevermind, i am dumb

* revert fix not needed

* fixup

* fixup

* another fixup

* more fixup to make ci finally happy

* fixup after rebasing

* fix qwen tests

* add internVL + typos here and there

* image token index -> id

* style

* fix init weights

* revert blip-2 not supported

* address comments

* fix copies

* revert blip2 test file as well

* as discussed internally, revert back CdGen models

* fix some tests

* fix more tests for compile

* CI red

* fix copies

* enumerate explicitly allowed models

* address comments

* fix tests

* fixup

* style again

* add tests for new model class

* another fixup ( x _ x )

* [fixup] unused attributes can be removed post-deprecation
2025-05-07 17:47:51 +02:00

5.8 KiB

Mllama

PyTorch

Overview

The Llama 3.2-Vision collection of multimodal large language models (LLMs) is a collection of pretrained and instruction-tuned image reasoning generative models in 11B and 90B sizes (text + images in / text out). The Llama 3.2-Vision instruction-tuned models are optimized for visual recognition, image reasoning, captioning, and answering general questions about an image.

Model Architecture: Llama 3.2-Vision is built on top of Llama 3.1 text-only model, which is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. To support image recognition tasks, the Llama 3.2-Vision model uses a separately trained vision adapter that integrates with the pre-trained Llama 3.1 language model. The adapter consists of a series of cross-attention layers that feed image encoder representations into the core LLM.

Usage Tips

  • For image+text and text inputs use MllamaForConditionalGeneration.
  • For text-only inputs use MllamaForCausalLM for generation to avoid loading vision tower.
  • Each sample can contain multiple images, and the number of images can vary between samples. The processor will pad the inputs to the maximum number of images across samples and to a maximum number of tiles within each image.
  • The text passed to the processor should have the "<|image|>" tokens where the images should be inserted.
  • The processor has its own apply_chat_template method to convert chat messages to text that can then be passed as text to the processor. If you're using transformers>=4.49.0, you can also get a vectorized output from apply_chat_template. See the Usage Examples below for more details on how to use it.

Mllama has an extra token used as a placeholder for image positions in the text. It means that input ids and an input embedding layer will have an extra token. But since the weights for input and output embeddings are not tied, the lm_head layer has one less token and will fail if you want to calculate loss on image tokens or apply some logit processors. In case you are training, make sure to mask out special "<|image|>" tokens in the labels as the model should not be trained on predicting them.

Otherwise if you see CUDA-side index erros when generating, use the below code to expand the lm_head by one more token.

old_embeddings = model.get_output_embeddings()

num_tokens = model.vocab_size + 1
resized_embeddings = model._get_resized_lm_head(old_embeddings, new_num_tokens=num_tokens, mean_resizing=True)
resized_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
model.set_output_embeddings(resized_embeddings)

Usage Example

Instruct model

import torch
from transformers import MllamaForConditionalGeneration, AutoProcessor

model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained(model_id)

messages = [
    [
        {
            "role": "user", 
            "content": [
                {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
                {"type": "text", "text": "What does the image show?"}
            ]
        }
    ],
]
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device)
output = model.generate(**inputs, max_new_tokens=25)
print(processor.decode(output[0]))

Base model

import requests
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor

model_id = "meta-llama/Llama-3.2-11B-Vision"
model = MllamaForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained(model_id)

prompt = "<|image|>If I had to write a haiku for this one"
url = "https://llava-vl.github.io/static/images/view.jpg"
raw_image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(text=prompt, images=raw_image, return_tensors="pt").to(model.device)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
print(processor.decode(output[0], skip_special_tokens=True))

MllamaConfig

autodoc MllamaConfig

MllamaProcessor

autodoc MllamaProcessor

MllamaImageProcessor

autodoc MllamaImageProcessor

MllamaForConditionalGeneration

autodoc MllamaForConditionalGeneration - forward

MllamaForCausalLM

autodoc MllamaForCausalLM - forward

MllamaTextModel

autodoc MllamaTextModel - forward

MllamaModel

autodoc MllamaModel

MllamaForCausalLM

autodoc MllamaForCausalLM - forward

MllamaVisionModel

autodoc MllamaVisionModel - forward