# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow if is_tf_available(): import tensorflow as tf import numpy as np from transformers import TFFlaubertModel @require_tf class TFFlaubertModelIntegrationTest(unittest.TestCase): @slow def test_output_embeds_base_model(self): model = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased") input_ids = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]], dtype=tf.int32, ) # "J'aime flaubert !" output = model(input_ids)[0] expected_shape = tf.TensorShape((1, 8, 512)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ], dtype=tf.float32, ) self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))