
* start * start having a clean 4d mask primitive * Update mask_utils.py * Update mask_utils.py * switch name * Update masking_utils.py * add a new AttentionMask tensor class * fix import * nits * fixes * use full and quandrants * general sdpa mask for all caches * style * start some tests * tests with sliding, chunked * add styling * test hybrid * Update masking_utils.py * small temp fixes * Update modeling_gemma2.py * compile compatible * Update masking_utils.py * improve * start making it more general * Update masking_utils.py * generate * make it work with flex style primitives! * Update masking_utils.py * Update masking_utils.py * Update masking_utils.py * improve * Update cache_utils.py * Update masking_utils.py * simplify - starting to look good! * Update masking_utils.py * name * Update masking_utils.py * style * Update masking_utils.py * Update masking_utils.py * Update masking_utils.py * Update masking_utils.py * small fix for flex * flex compile * FA2 * Update masking_utils.py * Escape for TGI/vLLM! * Update masking_utils.py * Update masking_utils.py * Update masking_utils.py * General case without cache * rename * full test on llama4 * small fix for FA2 guard with chunk * Update modeling_gemma2.py * post rebase cleanup * FA2 supports static cache! * Update modeling_flash_attention_utils.py * Update flex_attention.py * Update masking_utils.py * Update masking_utils.py * Update utils.py * override for export * Update executorch.py * Update executorch.py * Update executorch.py * Update executorch.py * Update masking_utils.py * Update masking_utils.py * output attentions * style * Update masking_utils.py * Update executorch.py * Add doicstring * Add license and put mask visualizer at the end * Update test_modeling_common.py * fix broken test * Update test_modeling_gemma.py * Update test_modeling_gemma2.py * Use fullgraph=False with FA2 * Update utils.py * change name * Update masking_utils.py * improve doc * change name * Update modeling_attn_mask_utils.py * more explicit logic based on model's property * pattern in config * extend * fixes * make it better * generalize to other test models * fix * Update masking_utils.py * fix * do not check mask equivalence if layer types are different * executorch * Update modeling_gemma2.py * Update masking_utils.py * use layer_idx instead * adjust * Update masking_utils.py * test * fix imports * Update modeling_gemma2.py * other test models * Update modeling_llama4.py * Update masking_utils.py * improve * simplify * Update masking_utils.py * typos * typo * fix * Update masking_utils.py * default DynamicCache * remove default cache * simplify * Update masking_utils.py * Update masking_utils.py * Update masking_utils.py * Update masking_utils.py * simplify * Update masking_utils.py * Update masking_utils.py * Update masking_utils.py * export * Update executorch.py * Update executorch.py * Update flex_attention.py * Update executorch.py * upstream to modular gemma 1 & 2 * Update modular_mistral.py * switch names * use dict * put it in the Layer directly * update copy model source for mask functions * apply so many modular (hopefully 1 shot) * use explicite dicts for make style happy * protect import * check docstring * better default in hybrid caches * qwens * Update modular_qwen2.py * simplify core logic! * Update executorch.py * qwen3 moe * Update masking_utils.py * Update masking_utils.py * simplify a lot sdpa causal skip * Update masking_utils.py * post-rebase * gemma3 finally * style * check it before * gemma3 * More general with newer torch * align gemma3 * Update utils.py * Update utils.py * Update masking_utils.py * Update test_modeling_common.py * Update flex_attention.py * Update flex_attention.py * Update flex_attention.py * test * executorch * Update test_modeling_common.py * Update masking_utils.py * Update masking_utils.py * Update masking_utils.py * Update masking_utils.py * Update executorch.py * Update test_modeling_common.py * fix copies * device * sdpa can be used without mask -> pass the torchscript tests in this case * Use enum for check * revert enum and add check instead * remove broken test * cohere2 * some doc & reorganize the Interface * Update tensor_parallel.py * Update tensor_parallel.py * doc and dummy * Update test_modeling_paligemma2.py * Update modeling_falcon_h1.py * Update masking_utils.py * executorch patch * style * CIs * use register in executorch * final comments! --------- Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
7.9 KiB
Attention Interface
This page describes how to use the AttentionInterface
in order to register custom attention functions to use with
supported models.
Customizing attention function
Most recent models can now switch from one attention function used in the Attention layer to the other, thanks to a simple mapping.
By default, we provide the implementation for sdpa
,
flash_attention_2
and flex_attention
as well as eager
, which is a simple matrix multiplication without any optimization on top.
This is the setting you can usually choose when instantiating a model:
from transformers import AutoModelForCausalLM
model_id = "meta-llama/Llama-3.2-1B"
# Here, using flash attention as an example
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="flash_attention_2")
But what if you wanted to create your own attention function? Or simply play around with existing ones, adding
a few statements here and there? You can now do so with the AttentionInterface
! Here is an example:
from transformers import AutoModelForCausalLM, AttentionInterface
from transformers.integrations.sdpa_attention import sdpa_attention_forward
import torch
model_id = "meta-llama/Llama-3.2-1B"
def my_new_sdpa(*args, **kwargs):
print("I just entered the attention computation")
return sdpa_attention_forward(*args, **kwargs)
AttentionInterface.register("my_new_sdpa", my_new_sdpa)
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="my_new_sdpa")
# Try running the forward with the new attention function
model(torch.ones(1, 5, dtype=int))
You will see it prints "I just entered the attention computation" as many times as there are layers in the model (with this example, 16 times).
Dynamically switching attention function
You could dynamically change the model's attention function as well, by overriding the config._attn_implementation
field:
# Back to use original sdpa implementation
model.config._attn_implementation = "sdpa"
model(torch.ones(1, 5, dtype=int))
and it will stop printing the statements, as it now uses the sdpa
attention.
This allows to quickly change an attention function, without needing to reload the model!
What about new args needed in my custom attention function?
But indeed, what if the new function requires a new arg to be properly used? It's no issue! Models supporting the
AttentionInterface
propagate kwargs all the way to the Attention layers, and to the used attention function. That way,
you can simply pass the arg (as a kwargs, i.e. you need to qualify the name of the arg) in the model's forward, and it will be correctly used in the attention. However, custom attention functions have some limitations. In particular, it must follow the signature and return format of other attention functions, i.e.
from transformers import AutoModelForCausalLM, AttentionInterface
from transformers.integrations.sdpa_attention import sdpa_attention_forward
import torch
def custom_attention(
module: torch.nn.Module, # required arg
query: torch.Tensor, # required arg
key: torch.Tensor, # required arg
value: torch.Tensor, # required arg
attention_mask: Optional[torch.Tensor], # required arg
a_new_kwargs = None, # You can now add as many kwargs as you need
another_new_kwargs = None, # You can now add as many kwargs as you need
**kwargs, # You need to accept **kwargs as models will pass other args
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]
... # do your magic!
return attn_output, attn_weights # attn_weights are optional here
AttentionInterface.register("custom", custom_attention)
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="custom")
# Forward pass with the new kwargs
model(torch.ones(1, 5, dtype=int), a_new_kwargs=..., another_new_kwargs=...)
If in doubt about what args/kwargs a given model sends to the attention function, simply check that model's modeling code on GitHub!
Accessing current available implementations
Most of the time, you will simply need to register
a new function. If, however, you need to access an existing one,
and/or perform a few checks, the preferred way is to use the global ALL_ATTENTION_FUNCTIONS
. It behaves the same way you
would expect from a usual Python dictionary:
>>> from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
>>> list(ALL_ATTENTION_FUNCTIONS.keys())
>>> ['flash_attention_2', 'flex_attention', 'sdpa']
>>> ALL_ATTENTION_FUNCTIONS["sdpa"]
>>> <function transformers.integrations.sdpa_attention.sdpa_attention_forward>
>>> ALL_ATTENTION_FUNCTIONS.get("sdpa", None)
>>> <function transformers.integrations.sdpa_attention.sdpa_attention_forward>
# You can also globally `register` a new function directly on it
>>> ALL_ATTENTION_FUNCTIONS.register("new_func", new_func)
Attention Mask Interface
Having a new attention function may mean that you need a new format of attention mask to decide what key and value tokens
the query tokens should attend to. This is now possible with the AttentionMaskInterface
! It works in the same way as
the AttentionInterface
:
from transformers import AttentionMaskInterface
from transformers.masking_utils import sdpa_mask
import torch
def my_new_sdpa_mask(*args, **kwargs):
print("I just entered the attention mask computation")
return sdpa_mask(*args, **kwargs)
AttentionMaskInterface.register("my_new_sdpa_mask", my_new_sdpa_mask)
The reason you have to register it is because we need to automatically correct your mask format based on the attention implementation (for example, flex attention uses a BlockMask format, while sdpa uses a 4D tensor).
By default, if you do not register an attention mask function along with your attention function, mask creation will be skipped
and attention_mask=None
will be passed along to the Attention layers.
The default signature of the attention mask functions is the following:
def custom_attention_mask(
batch_size: int, # required arg
cache_position: torch.Tensor, # required arg
kv_length: int, # required arg
kv_offset: int = 0, # required arg
mask_function: Callable = causal_mask_function, # required arg
attention_mask: Optional[torch.Tensor] = None, # required arg
**kwargs, # a few additional args may be passed as kwargs, especially the model's config is always passed
) -> Optional[torch.Tensor]:
It mostly works thanks to the mask_function
, which is a Callable
in the form of torch's mask_mod functions, taking 4 indices as input and returning a boolean to indicate if this position should take part in the attention computation.
If you cannot use the mask_function
to create your mask for some reason, you can try to work around it by doing something similar to our torch export workaround.