
* Fixed typo: insted to instead * Fixed typo: relase to release * Fixed typo: nighlty to nightly * Fixed typos: versatible, benchamarks, becnhmark to versatile, benchmark, benchmarks * Fixed typo in comment: quantizd to quantized * Fixed typo: architecutre to architecture * Fixed typo: contibution to contribution * Fixed typo: Presequities to Prerequisites * Fixed typo: faste to faster * Fixed typo: extendeding to extending * Fixed typo: segmetantion_maps to segmentation_maps * Fixed typo: Alternativelly to Alternatively * Fixed incorrectly defined variable: output to output_disabled * Fixed typo in library name: tranformers.onnx to transformers.onnx * Fixed missing import: import tensorflow as tf * Fixed incorrectly defined variable: token_tensor to tokens_tensor * Fixed missing import: import torch * Fixed incorrectly defined variable and typo: uromaize to uromanize * Fixed incorrectly defined variable and typo: uromaize to uromanize * Fixed typo in function args: numpy.ndarry to numpy.ndarray * Fixed Inconsistent Library Name: Torchscript to TorchScript * Fixed Inconsistent Class Name: OneformerProcessor to OneFormerProcessor * Fixed Inconsistent Class Named Typo: TFLNetForMultipleChoice to TFXLNetForMultipleChoice * Fixed Inconsistent Library Name Typo: Pytorch to PyTorch * Fixed Inconsistent Function Name Typo: captureWarning to captureWarnings * Fixed Inconsistent Library Name Typo: Pytorch to PyTorch * Fixed Inconsistent Class Name Typo: TrainingArgument to TrainingArguments * Fixed Inconsistent Model Name Typo: Swin2R to Swin2SR * Fixed Inconsistent Model Name Typo: EART to BERT * Fixed Inconsistent Library Name Typo: TensorFLow to TensorFlow * Fixed Broken Link for Speech Emotion Classification with Wav2Vec2 * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed Punctuation: Two commas * Fixed Punctuation: No Space between XLM-R and is * Fixed Punctuation: No Space between [~accelerate.Accelerator.backward] and method * Added backticks to display model.fit() in codeblock * Added backticks to display openai-community/gpt2 in codeblock * Fixed Minor Typo: will to with * Fixed Minor Typo: is to are * Fixed Minor Typo: in to on * Fixed Minor Typo: inhibits to exhibits * Fixed Minor Typo: they need to it needs * Fixed Minor Typo: cast the load the checkpoints To load the checkpoints * Fixed Inconsistent Class Name Typo: TFCamembertForCasualLM to TFCamembertForCausalLM * Fixed typo in attribute name: outputs.last_hidden_states to outputs.last_hidden_state * Added missing verbosity level: fatal * Fixed Minor Typo: take To takes * Fixed Minor Typo: heuristic To heuristics * Fixed Minor Typo: setting To settings * Fixed Minor Typo: Content To Contents * Fixed Minor Typo: millions To million * Fixed Minor Typo: difference To differences * Fixed Minor Typo: while extract To which extracts * Fixed Minor Typo: Hereby To Here * Fixed Minor Typo: addition To additional * Fixed Minor Typo: supports To supported * Fixed Minor Typo: so that benchmark results TO as a consequence, benchmark * Fixed Minor Typo: a To an * Fixed Minor Typo: a To an * Fixed Minor Typo: Chain-of-though To Chain-of-thought
6.2 KiB
Jamba
Overview
Jamba is a state-of-the-art, hybrid SSM-Transformer LLM. It is the first production-scale Mamba implementation, which opens up interesting research and application opportunities. While this initial experimentation shows encouraging gains, we expect these to be further enhanced with future optimizations and explorations.
For full details of this model please read the release blog post.
Model Details
Jamba is a pretrained, mixture-of-experts (MoE) generative text model, with 12B active parameters and an overall of 52B parameters across all experts. It supports a 256K context length, and can fit up to 140K tokens on a single 80GB GPU.
As depicted in the diagram below, Jamba's architecture features a blocks-and-layers approach that allows Jamba to successfully integrate Transformer and Mamba architectures altogether. Each Jamba block contains either an attention or a Mamba layer, followed by a multi-layer perceptron (MLP), producing an overall ratio of one Transformer layer out of every eight total layers.
Usage
Prerequisites
Jamba requires you use transformers
version 4.39.0 or higher:
pip install transformers>=4.39.0
In order to run optimized Mamba implementations, you first need to install mamba-ssm
and causal-conv1d
:
pip install mamba-ssm causal-conv1d>=1.2.0
You also have to have the model on a CUDA device.
You can run the model not using the optimized Mamba kernels, but it is not recommended as it will result in significantly lower latencies. In order to do that, you'll need to specify use_mamba_kernels=False
when loading the model.
Run the model
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
input_ids = tokenizer("In the recent Super Bowl LVIII,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
print(tokenizer.batch_decode(outputs))
# ["<|startoftext|>In the recent Super Bowl LVIII, the Kansas City Chiefs emerged victorious, defeating the San Francisco 49ers in a thrilling overtime showdown. The game was a nail-biter, with both teams showcasing their skills and determination.\n\nThe Chiefs, led by their star quarterback Patrick Mahomes, displayed their offensive prowess, while the 49ers, led by their strong defense, put up a tough fight. The game went into overtime, with the Chiefs ultimately securing the win with a touchdown.\n\nThe victory marked the Chiefs' second Super Bowl win in four years, solidifying their status as one of the top teams in the NFL. The game was a testament to the skill and talent of both teams, and a thrilling end to the NFL season.\n\nThe Super Bowl is not just about the game itself, but also about the halftime show and the commercials. This year's halftime show featured a star-studded lineup, including Usher, Alicia Keys, and Lil Jon. The show was a spectacle of music and dance, with the performers delivering an energetic and entertaining performance.\n"]
Loading the model in half precision
The published checkpoint is saved in BF16. In order to load it into RAM in BF16/FP16, you need to specify torch_dtype
:
from transformers import AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1", torch_dtype=torch.bfloat16)
# you can also use torch_dtype=torch.float16
When using half precision, you can enable the FlashAttention2 implementation of the Attention blocks. In order to use it, you also need the model on a CUDA device. Since in this precision the model is to big to fit on a single 80GB GPU, you'll also need to parallelize it using accelerate:
from transformers import AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto")
Load the model in 8-bit
Using 8-bit precision, it is possible to fit up to 140K sequence lengths on a single 80GB GPU. You can easily quantize the model to 8-bit using bitsandbytes. In order to not degrade model quality, we recommend to exclude the Mamba blocks from the quantization:
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["mamba"])
model = AutoModelForCausalLM.from_pretrained(
"ai21labs/Jamba-v0.1", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", quantization_config=quantization_config
)
JambaConfig
autodoc JambaConfig
JambaModel
autodoc JambaModel - forward
JambaForCausalLM
autodoc JambaForCausalLM - forward
JambaForSequenceClassification
autodoc transformers.JambaForSequenceClassification - forward