mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
293 lines
10 KiB
Python
293 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Pixtral model."""
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
PixtralVisionConfig,
|
|
PixtralVisionModel,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
else:
|
|
is_torch_greater_or_equal_than_2_0 = False
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class PixtralVisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return PixtralVisionConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
projection_dim=self.projection_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = PixtralVisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = (self.image_size, self.image_size)
|
|
patch_size = (self.patch_size, self.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_model_with_projection(self, config, pixel_values):
|
|
model = PixtralVisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = (self.image_size, self.image_size)
|
|
patch_size = (self.patch_size, self.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
|
self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class PixtralVisionModelModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `PixtralVisionModel`.
|
|
"""
|
|
|
|
all_model_classes = (PixtralVisionModel,) if is_torch_available() else ()
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = PixtralVisionModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=PixtralVisionConfig, has_text_modality=False)
|
|
|
|
@unittest.skip("model does not support input embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip("model does not support input embeds")
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Compile not yet supported because in Pixtral models")
|
|
def test_sdpa_can_compile_dynamic(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Compile not yet supported because in Pixtral models")
|
|
def test_sdpa_can_dispatch_on_flash(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_attention_outputs(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_cpu_offload(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_batching_equivalence(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_disk_offload_bin(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_multi_gpu_data_parallel_forward(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_model_parallelism(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_model_outputs_equivalence(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_save_load(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_resize_tokens_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_model_main_input_name(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_hidden_states_output(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_gradient_checkpointing_backward_compatibility(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_disk_offload_safetensors(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not supported yet")
|
|
def test_determinism(self):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
class PixtralVisionModelIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.processor = AutoProcessor.from_pretrained("hf-internal-testing/pixtral-12b")
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model = PixtralVisionModel.from_pretrained("hf-internal-testing/pixtral-12b", load_in_4bit=True)
|
|
|
|
prompt = "<s>[INST][IMG]\nWhat are the things I should be cautious about when I visit this place?[/INST]"
|
|
image_file = "https://pixtral-vl.github.io/static/images/view.jpg"
|
|
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
|
inputs = self.processor(prompt, raw_image, return_tensors="pt")
|
|
|
|
EXPECTED_INPUT_IDS = torch.tensor([[1, 32000, 28705, 13, 11123, 28747, 1824, 460, 272, 1722,315, 1023, 347, 13831, 925, 684, 739, 315, 3251, 456,1633, 28804, 13, 4816, 8048, 12738, 28747]]) # fmt: skip
|
|
self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS))
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
EXPECTED_DECODED_TEXT = "\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT: When visiting this place, there are a few things one should be cautious about. Firstly," # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|