# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Pixtral model.""" import gc import unittest import requests from transformers import ( AutoProcessor, PixtralVisionConfig, PixtralVisionModel, is_torch_available, is_vision_available, ) from transformers.testing_utils import ( require_bitsandbytes, require_torch, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch else: is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image class PixtralVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return PixtralVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = PixtralVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_with_projection(self, config, pixel_values): model = PixtralVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class PixtralVisionModelModelTest(ModelTesterMixin, unittest.TestCase): """ Model tester for `PixtralVisionModel`. """ all_model_classes = (PixtralVisionModel,) if is_torch_available() else () test_pruning = False test_head_masking = False def setUp(self): self.model_tester = PixtralVisionModelTester(self) self.config_tester = ConfigTester(self, config_class=PixtralVisionConfig, has_text_modality=False) @unittest.skip("model does not support input embeds") def test_inputs_embeds(self): pass @unittest.skip("model does not support input embeds") def test_inputs_embeds_matches_input_ids(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="Compile not yet supported because in Pixtral models") def test_sdpa_can_compile_dynamic(self): pass @unittest.skip(reason="Compile not yet supported because in Pixtral models") def test_sdpa_can_dispatch_on_flash(self): pass @unittest.skip(reason="Not supported yet") def test_attention_outputs(self): pass @unittest.skip(reason="Not supported yet") def test_cpu_offload(self): pass @unittest.skip(reason="Not supported yet") def test_batching_equivalence(self): pass @unittest.skip(reason="Not supported yet") def test_disk_offload_bin(self): pass @unittest.skip(reason="Not supported yet") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Not supported yet") def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="Not supported yet") def test_model_parallelism(self): pass @unittest.skip(reason="Not supported yet") def test_model_outputs_equivalence(self): pass @unittest.skip(reason="Not supported yet") def test_save_load(self): pass @unittest.skip(reason="Not supported yet") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="Not supported yet") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Not supported yet") def test_model_main_input_name(self): pass @unittest.skip(reason="Not supported yet") def test_initialization(self): pass @unittest.skip(reason="Not supported yet") def test_hidden_states_output(self): pass @unittest.skip(reason="Not supported yet") def test_gradient_checkpointing_backward_compatibility(self): pass @unittest.skip(reason="Not supported yet") def test_feed_forward_chunking(self): pass @unittest.skip(reason="Not supported yet") def test_disk_offload_safetensors(self): pass @unittest.skip(reason="Not supported yet") def test_determinism(self): pass @require_torch class PixtralVisionModelIntegrationTest(unittest.TestCase): def setUp(self): self.processor = AutoProcessor.from_pretrained("hf-internal-testing/pixtral-12b") def tearDown(self): gc.collect() torch.cuda.empty_cache() @slow @require_bitsandbytes def test_small_model_integration_test(self): # Let' s make sure we test the preprocessing to replace what is used model = PixtralVisionModel.from_pretrained("hf-internal-testing/pixtral-12b", load_in_4bit=True) prompt = "[INST][IMG]\nWhat are the things I should be cautious about when I visit this place?[/INST]" image_file = "https://pixtral-vl.github.io/static/images/view.jpg" raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = self.processor(prompt, raw_image, return_tensors="pt") EXPECTED_INPUT_IDS = torch.tensor([[1, 32000, 28705, 13, 11123, 28747, 1824, 460, 272, 1722,315, 1023, 347, 13831, 925, 684, 739, 315, 3251, 456,1633, 28804, 13, 4816, 8048, 12738, 28747]]) # fmt: skip self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS)) output = model.generate(**inputs, max_new_tokens=20) EXPECTED_DECODED_TEXT = "\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT: When visiting this place, there are a few things one should be cautious about. Firstly," # fmt: skip self.assertEqual( self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT, )