transformers/docs/source/en/quantization/hqq.md
Nilay Bhatnagar eedd21b9e7
Fixed Majority of the Typos in transformers[en] Documentation (#33350)
* Fixed typo: insted to instead

* Fixed typo: relase to release

* Fixed typo: nighlty to nightly

* Fixed typos: versatible, benchamarks, becnhmark to versatile, benchmark, benchmarks

* Fixed typo in comment: quantizd to quantized

* Fixed typo: architecutre to architecture

* Fixed typo: contibution to contribution

* Fixed typo: Presequities to Prerequisites

* Fixed typo: faste to faster

* Fixed typo: extendeding to extending

* Fixed typo: segmetantion_maps to segmentation_maps

* Fixed typo: Alternativelly to Alternatively

* Fixed incorrectly defined variable: output to output_disabled

* Fixed typo in library name: tranformers.onnx to transformers.onnx

* Fixed missing import: import tensorflow as tf

* Fixed incorrectly defined variable: token_tensor to tokens_tensor

* Fixed missing import: import torch

* Fixed incorrectly defined variable and typo: uromaize to uromanize

* Fixed incorrectly defined variable and typo: uromaize to uromanize

* Fixed typo in function args: numpy.ndarry to numpy.ndarray

* Fixed Inconsistent Library Name: Torchscript to TorchScript

* Fixed Inconsistent Class Name: OneformerProcessor to OneFormerProcessor

* Fixed Inconsistent Class Named Typo: TFLNetForMultipleChoice to TFXLNetForMultipleChoice

* Fixed Inconsistent Library Name Typo: Pytorch to PyTorch

* Fixed Inconsistent Function Name Typo: captureWarning to captureWarnings

* Fixed Inconsistent Library Name Typo: Pytorch to PyTorch

* Fixed Inconsistent Class Name Typo: TrainingArgument to TrainingArguments

* Fixed Inconsistent Model Name Typo: Swin2R to Swin2SR

* Fixed Inconsistent Model Name Typo: EART to BERT

* Fixed Inconsistent Library Name Typo: TensorFLow to TensorFlow

* Fixed Broken Link for Speech Emotion Classification with Wav2Vec2

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed Punctuation: Two commas

* Fixed Punctuation: No Space between XLM-R and is

* Fixed Punctuation: No Space between [~accelerate.Accelerator.backward] and method

* Added backticks to display model.fit() in codeblock

* Added backticks to display openai-community/gpt2 in codeblock

* Fixed Minor Typo: will to with

* Fixed Minor Typo: is to are

* Fixed Minor Typo: in to on

* Fixed Minor Typo: inhibits to exhibits

* Fixed Minor Typo: they need to it needs

* Fixed Minor Typo: cast the load the checkpoints To load the checkpoints

* Fixed Inconsistent Class Name Typo: TFCamembertForCasualLM to TFCamembertForCausalLM

* Fixed typo in attribute name: outputs.last_hidden_states to outputs.last_hidden_state

* Added missing verbosity level: fatal

* Fixed Minor Typo: take To takes

* Fixed Minor Typo: heuristic To heuristics

* Fixed Minor Typo: setting To settings

* Fixed Minor Typo: Content To Contents

* Fixed Minor Typo: millions To million

* Fixed Minor Typo: difference To differences

* Fixed Minor Typo: while extract To which extracts

* Fixed Minor Typo: Hereby To Here

* Fixed Minor Typo: addition To additional

* Fixed Minor Typo: supports To supported

* Fixed Minor Typo: so that benchmark results TO as a consequence, benchmark

* Fixed Minor Typo: a To an

* Fixed Minor Typo: a To an

* Fixed Minor Typo: Chain-of-though To Chain-of-thought
2024-09-09 10:47:24 +02:00

2.9 KiB

HQQ

Half-Quadratic Quantization (HQQ) implements on-the-fly quantization via fast robust optimization. It doesn't require calibration data and can be used to quantize any model.
Please refer to the official package for more details.

For installation, we recommend you use the following approach to get the latest version and build its corresponding CUDA kernels:

pip install hqq

To quantize a model, you need to create an [HqqConfig]. There are two ways of doing it:

from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig

# Method 1: all linear layers will use the same quantization config
quant_config  = HqqConfig(nbits=8, group_size=64, quant_zero=False, quant_scale=False, axis=0) #axis=0 is used by default
# Method 2: each linear layer with the same tag will use a dedicated quantization config
q4_config = {'nbits':4, 'group_size':64, 'quant_zero':False, 'quant_scale':False}
q3_config = {'nbits':3, 'group_size':32, 'quant_zero':False, 'quant_scale':False}
quant_config  = HqqConfig(dynamic_config={
  'self_attn.q_proj':q4_config,
  'self_attn.k_proj':q4_config,
  'self_attn.v_proj':q4_config,
  'self_attn.o_proj':q4_config,

  'mlp.gate_proj':q3_config,
  'mlp.up_proj'  :q3_config,
  'mlp.down_proj':q3_config,
})

The second approach is especially interesting for quantizing Mixture-of-Experts (MoEs) because the experts are less affected by lower quantization settings.

Then you simply quantize the model as follows

model = transformers.AutoModelForCausalLM.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    device_map="cuda", 
    quantization_config=quant_config
)

Optimized Runtime

HQQ supports various backends, including pure PyTorch and custom dequantization CUDA kernels. These backends are suitable for older gpus and peft/QLoRA training. For faster inference, HQQ supports 4-bit fused kernels (TorchAO and Marlin), reaching up to 200 tokens/sec on a single 4090. For more details on how to use the backends, please refer to https://github.com/mobiusml/hqq/?tab=readme-ov-file#backend