transformers/docs/source/en/main_classes/quantization.md
Andrei Panferov 64c05eecd6
HIGGS Quantization Support (#34997)
* higgs init

* working with crunches

* per-model workspaces

* style

* style 2

* tests and style

* higgs tests passing

* protecting torch import

* removed torch.Tensor type annotations

* torch.nn.Module inheritance fix maybe

* hide inputs inside quantizer calls

* style structure something

* Update src/transformers/quantizers/quantizer_higgs.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* reworked num_sms

* Update src/transformers/integrations/higgs.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* revamped device checks

* docstring upd

* Update src/transformers/quantizers/quantizer_higgs.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* edited tests and device map assertions

* minor edits

* updated flute cuda version in docker

* Added p=1 and 2,3bit HIGGS

* flute version check update

* incorporated `modules_to_not_convert`

* less hardcoding

* Fixed comment

* Added docs

* Fixed gemma support

* example in docs

* fixed torch_dtype for HIGGS

* Update docs/source/en/quantization/higgs.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Collection link

* dequantize interface

* newer flute version, torch.compile support

* unittest message fix

* docs update compile

* isort

* ValueError instead of assert

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2024-12-23 16:54:49 +01:00

2.0 KiB
Executable File

Quantization

Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Transformers supports the AWQ and GPTQ quantization algorithms and it supports 8-bit and 4-bit quantization with bitsandbytes.

Quantization techniques that aren't supported in Transformers can be added with the [HfQuantizer] class.

Learn how to quantize models in the Quantization guide.

QuantoConfig

autodoc QuantoConfig

AqlmConfig

autodoc AqlmConfig

VptqConfig

autodoc VptqConfig

AwqConfig

autodoc AwqConfig

EetqConfig

autodoc EetqConfig

GPTQConfig

autodoc GPTQConfig

BitsAndBytesConfig

autodoc BitsAndBytesConfig

HfQuantizer

autodoc quantizers.base.HfQuantizer

HiggsConfig

autodoc HiggsConfig

HqqConfig

autodoc HqqConfig

FbgemmFp8Config

autodoc FbgemmFp8Config

CompressedTensorsConfig

autodoc CompressedTensorsConfig

TorchAoConfig

autodoc TorchAoConfig

BitNetConfig

autodoc BitNetConfig