mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 22:00:09 +06:00

* use device agnostic APIs in test cases Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> * add one more Signed-off-by: YAO Matrix <matrix.yao@intel.com> * xpu now supports integer device id, aligning to CUDA behaviors Signed-off-by: Matrix Yao <matrix.yao@intel.com> * update to use device_properties Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> * update comment Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix comments Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> --------- Signed-off-by: Matrix Yao <matrix.yao@intel.com> Signed-off-by: YAO Matrix <matrix.yao@intel.com> Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
248 lines
9.5 KiB
Python
248 lines
9.5 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, SpQRConfig, StaticCache
|
|
from transformers.testing_utils import (
|
|
backend_empty_cache,
|
|
require_accelerate,
|
|
require_spqr,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_accelerate_available, is_torch_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_accelerate_available():
|
|
from accelerate import init_empty_weights
|
|
|
|
|
|
@require_torch_gpu
|
|
class SpQRConfigTest(unittest.TestCase):
|
|
def test_to_dict(self):
|
|
"""
|
|
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
|
|
"""
|
|
quantization_config = SpQRConfig()
|
|
config_to_dict = quantization_config.to_dict()
|
|
|
|
for key in config_to_dict:
|
|
self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
|
|
|
|
def test_from_dict(self):
|
|
"""
|
|
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
|
|
"""
|
|
dict = {
|
|
"beta1": 16,
|
|
"beta2": 16,
|
|
"bits": 3,
|
|
"modules_to_not_convert": ["lm_head.weight"],
|
|
"shapes": {"model.layers.0.self_attn.q_proj.dense_weights.shape": 16},
|
|
}
|
|
quantization_config = SpQRConfig.from_dict(dict)
|
|
|
|
self.assertEqual(dict["beta1"], quantization_config.beta1)
|
|
self.assertEqual(dict["beta2"], quantization_config.beta2)
|
|
self.assertEqual(dict["bits"], quantization_config.bits)
|
|
self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert)
|
|
self.assertEqual(dict["shapes"], quantization_config.shapes)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_spqr
|
|
@require_accelerate
|
|
class SpQRTest(unittest.TestCase):
|
|
model_name = "elvircrn/Llama-2-7b-SPQR-3Bit-16x16-red_pajama-hf"
|
|
|
|
input_text = "Hello my name is"
|
|
max_new_tokens = 32
|
|
|
|
EXPECTED_OUTPUT = (
|
|
"Hello my name is Jesse. (I'm also known as Jesse) I'm a 25 year old male from United States. I'm looking for"
|
|
)
|
|
EXPECTED_OUTPUT_COMPILE = "Hello my name is Jake and I am a 20 year old student at the University of North Texas. (Go Mean Green!) I am a huge fan of the Dallas"
|
|
|
|
# called only once for all test in this class
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
"""
|
|
Setup quantized model
|
|
"""
|
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
|
|
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
|
|
cls.model_name,
|
|
device_map=torch_device,
|
|
)
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
def test_quantized_model_conversion(self):
|
|
"""
|
|
Simple test that checks if the quantized model has been converted properly
|
|
"""
|
|
from spqr_quant import QuantizedLinear
|
|
|
|
from transformers.integrations import replace_with_spqr_linear
|
|
|
|
model_id = "meta-llama/Llama-2-7b-hf"
|
|
config = AutoConfig.from_pretrained(model_id)
|
|
quantization_config = AutoConfig.from_pretrained(self.model_name, return_dict=False).quantization_config
|
|
quantization_config = SpQRConfig.from_dict(quantization_config)
|
|
|
|
with init_empty_weights():
|
|
model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id, config=config)
|
|
|
|
nb_linears = 0
|
|
for module in model.modules():
|
|
if isinstance(module, torch.nn.Linear):
|
|
nb_linears += 1
|
|
|
|
model, _ = replace_with_spqr_linear(
|
|
model,
|
|
quantization_config=quantization_config,
|
|
modules_to_not_convert=quantization_config.modules_to_not_convert,
|
|
)
|
|
|
|
nb_spqr_linear = 0
|
|
for module in model.modules():
|
|
if isinstance(module, QuantizedLinear):
|
|
nb_spqr_linear += 1
|
|
|
|
self.assertEqual(nb_linears - 1, nb_spqr_linear)
|
|
|
|
def test_quantized_model(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly
|
|
"""
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
|
|
output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|
|
|
|
def test_raise_if_non_quantized(self):
|
|
model_id = "meta-llama/Llama-2-7b-hf"
|
|
quantization_config = SpQRConfig()
|
|
|
|
with self.assertRaises(ValueError):
|
|
_ = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)
|
|
|
|
@unittest.skip
|
|
def test_save_pretrained(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly after being saved and loaded
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
self.quantized_model.save_pretrained(tmpdirname)
|
|
model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=torch_device)
|
|
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
|
|
output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|
|
|
|
@require_torch_multi_gpu
|
|
def test_quantized_model_multi_gpu(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly with multiple GPUs
|
|
"""
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
|
|
quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto")
|
|
|
|
self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1})
|
|
|
|
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
|
|
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|
|
|
|
def test_quantized_model_compile(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly
|
|
"""
|
|
|
|
# Sample tokens greedily
|
|
def decode_one_tokens(model, cur_token, input_pos, cache_position, past_key_values):
|
|
logits = model(
|
|
cur_token,
|
|
position_ids=input_pos,
|
|
cache_position=cache_position,
|
|
past_key_values=past_key_values,
|
|
return_dict=False,
|
|
use_cache=True,
|
|
)[0]
|
|
new_token = torch.argmax(logits[:, [-1]], dim=-1).to(torch.int)
|
|
|
|
return new_token
|
|
|
|
# Tokenize the test input
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)["input_ids"]
|
|
seq_length = input_ids.shape[1]
|
|
|
|
# Setup static KV cache for generation
|
|
past_key_values = StaticCache(
|
|
config=self.quantized_model.config,
|
|
max_batch_size=1,
|
|
max_cache_len=seq_length + self.max_new_tokens + 1,
|
|
device=torch_device,
|
|
dtype=self.quantized_model.config._pre_quantization_dtype,
|
|
)
|
|
|
|
# Allocate token ids to be generated and copy prefix ids
|
|
cache_position = torch.arange(seq_length, device=torch_device)
|
|
generated_ids = torch.zeros(1, seq_length + self.max_new_tokens, dtype=torch.int, device=torch_device)
|
|
generated_ids[:, cache_position] = input_ids.to(torch_device).to(torch.int)
|
|
|
|
# Do a forward pass to fill the prefix cache and compile the kernels if necessary
|
|
logits = self.quantized_model(
|
|
input_ids,
|
|
cache_position=cache_position,
|
|
past_key_values=past_key_values,
|
|
return_dict=False,
|
|
use_cache=True,
|
|
)[0]
|
|
next_token = torch.argmax(logits[:, [-1]], dim=-1).to(torch.int)
|
|
generated_ids[:, [seq_length]] = next_token
|
|
|
|
with torch.no_grad():
|
|
# Compile the CUDA graph
|
|
decode_one_tokens = torch.compile(decode_one_tokens, mode="default", backend="inductor", fullgraph=True)
|
|
|
|
# Generate tokens one by one
|
|
cache_position = torch.tensor([seq_length + 1], device=torch_device)
|
|
for _ in range(1, self.max_new_tokens):
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
|
|
next_token = decode_one_tokens(
|
|
self.quantized_model, next_token.clone(), None, cache_position, past_key_values
|
|
)
|
|
generated_ids.index_copy_(1, cache_position, next_token)
|
|
cache_position += 1
|
|
|
|
# Check generated text
|
|
self.assertEqual(
|
|
self.tokenizer.decode(generated_ids[0], skip_special_tokens=True), self.EXPECTED_OUTPUT_COMPILE
|
|
)
|