# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, SpQRConfig, StaticCache from transformers.testing_utils import ( backend_empty_cache, require_accelerate, require_spqr, require_torch_gpu, require_torch_multi_gpu, slow, torch_device, ) from transformers.utils import is_accelerate_available, is_torch_available if is_torch_available(): import torch if is_accelerate_available(): from accelerate import init_empty_weights @require_torch_gpu class SpQRConfigTest(unittest.TestCase): def test_to_dict(self): """ Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object """ quantization_config = SpQRConfig() config_to_dict = quantization_config.to_dict() for key in config_to_dict: self.assertEqual(getattr(quantization_config, key), config_to_dict[key]) def test_from_dict(self): """ Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict """ dict = { "beta1": 16, "beta2": 16, "bits": 3, "modules_to_not_convert": ["lm_head.weight"], "shapes": {"model.layers.0.self_attn.q_proj.dense_weights.shape": 16}, } quantization_config = SpQRConfig.from_dict(dict) self.assertEqual(dict["beta1"], quantization_config.beta1) self.assertEqual(dict["beta2"], quantization_config.beta2) self.assertEqual(dict["bits"], quantization_config.bits) self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert) self.assertEqual(dict["shapes"], quantization_config.shapes) @slow @require_torch_gpu @require_spqr @require_accelerate class SpQRTest(unittest.TestCase): model_name = "elvircrn/Llama-2-7b-SPQR-3Bit-16x16-red_pajama-hf" input_text = "Hello my name is" max_new_tokens = 32 EXPECTED_OUTPUT = ( "Hello my name is Jesse. (I'm also known as Jesse) I'm a 25 year old male from United States. I'm looking for" ) EXPECTED_OUTPUT_COMPILE = "Hello my name is Jake and I am a 20 year old student at the University of North Texas. (Go Mean Green!) I am a huge fan of the Dallas" # called only once for all test in this class @classmethod def setUpClass(cls): """ Setup quantized model """ cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) cls.quantized_model = AutoModelForCausalLM.from_pretrained( cls.model_name, device_map=torch_device, ) def tearDown(self): gc.collect() backend_empty_cache(torch_device) gc.collect() def test_quantized_model_conversion(self): """ Simple test that checks if the quantized model has been converted properly """ from spqr_quant import QuantizedLinear from transformers.integrations import replace_with_spqr_linear model_id = "meta-llama/Llama-2-7b-hf" config = AutoConfig.from_pretrained(model_id) quantization_config = AutoConfig.from_pretrained(self.model_name, return_dict=False).quantization_config quantization_config = SpQRConfig.from_dict(quantization_config) with init_empty_weights(): model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id, config=config) nb_linears = 0 for module in model.modules(): if isinstance(module, torch.nn.Linear): nb_linears += 1 model, _ = replace_with_spqr_linear( model, quantization_config=quantization_config, modules_to_not_convert=quantization_config.modules_to_not_convert, ) nb_spqr_linear = 0 for module in model.modules(): if isinstance(module, QuantizedLinear): nb_spqr_linear += 1 self.assertEqual(nb_linears - 1, nb_spqr_linear) def test_quantized_model(self): """ Simple test that checks if the quantized model is working properly """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) def test_raise_if_non_quantized(self): model_id = "meta-llama/Llama-2-7b-hf" quantization_config = SpQRConfig() with self.assertRaises(ValueError): _ = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) @unittest.skip def test_save_pretrained(self): """ Simple test that checks if the quantized model is working properly after being saved and loaded """ with tempfile.TemporaryDirectory() as tmpdirname: self.quantized_model.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=torch_device) input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) @require_torch_multi_gpu def test_quantized_model_multi_gpu(self): """ Simple test that checks if the quantized model is working properly with multiple GPUs """ input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto") self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) def test_quantized_model_compile(self): """ Simple test that checks if the quantized model is working properly """ # Sample tokens greedily def decode_one_tokens(model, cur_token, input_pos, cache_position, past_key_values): logits = model( cur_token, position_ids=input_pos, cache_position=cache_position, past_key_values=past_key_values, return_dict=False, use_cache=True, )[0] new_token = torch.argmax(logits[:, [-1]], dim=-1).to(torch.int) return new_token # Tokenize the test input input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)["input_ids"] seq_length = input_ids.shape[1] # Setup static KV cache for generation past_key_values = StaticCache( config=self.quantized_model.config, max_batch_size=1, max_cache_len=seq_length + self.max_new_tokens + 1, device=torch_device, dtype=self.quantized_model.config._pre_quantization_dtype, ) # Allocate token ids to be generated and copy prefix ids cache_position = torch.arange(seq_length, device=torch_device) generated_ids = torch.zeros(1, seq_length + self.max_new_tokens, dtype=torch.int, device=torch_device) generated_ids[:, cache_position] = input_ids.to(torch_device).to(torch.int) # Do a forward pass to fill the prefix cache and compile the kernels if necessary logits = self.quantized_model( input_ids, cache_position=cache_position, past_key_values=past_key_values, return_dict=False, use_cache=True, )[0] next_token = torch.argmax(logits[:, [-1]], dim=-1).to(torch.int) generated_ids[:, [seq_length]] = next_token with torch.no_grad(): # Compile the CUDA graph decode_one_tokens = torch.compile(decode_one_tokens, mode="default", backend="inductor", fullgraph=True) # Generate tokens one by one cache_position = torch.tensor([seq_length + 1], device=torch_device) for _ in range(1, self.max_new_tokens): with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): next_token = decode_one_tokens( self.quantized_model, next_token.clone(), None, cache_position, past_key_values ) generated_ids.index_copy_(1, cache_position, next_token) cache_position += 1 # Check generated text self.assertEqual( self.tokenizer.decode(generated_ids[0], skip_special_tokens=True), self.EXPECTED_OUTPUT_COMPILE )