* updated the original RAG implementation to be compatible with the latest PL version
* updated the requirements.txt file
* execute make style
* code quality test
* code quality
* conflix resolved in requirement.txt
* code quality
* changed the MyDDP class name to CustomDDP
* Fixing bug that appears when using distilation (and potentially other uses).
During backward pass Pytorch complains with:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
This happens because the QA model code modifies the start_positions and end_positions input tensors, using clamp_ function: as a consequence the teacher and the student both modifies the inputs, and backward pass fails.
* Fixing all models QA clamp_ bug.
* Fix weight decay masking in `run_flax_glue.py`
Issues with the previous implementation:
- The `dict` from `traverse_util.flatten_dict` has keys which are tuples of strings, not one long string with the path separated by periods.
- `optax.masked` applies the transformation wherever the mask is True, so the masks are flipped.
- Flax's LayerNorm calls the scale parameter `scale` not `weight`
* Fix formatting with black
* adapt results
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
* add test_vocab_size for sentencepiece tok.
* add test_get_vocab for sentencepiece tok.
* add test_convert_token_and_id for sentencepiece tok.
* add test_tokenize_and_convert_tokens_to_string for all tok.
* improve test_tokenize_and_convert_tokens_to_string for sp. tok.
* add common tokenizer integration tests
- for albert
- for barthez
* add tokenizer integration tests to bert gen.
* add most tokenizer integration tests
* fix camembert tokenizer integration test
* add tokenizer integration test to marian
* add tokenizer integration test to reformer
* add typing and doc to tokenizer_integration_test_util
* fix tokenizer integration test of reformer
* improve test_sentencepiece_tokenize_and_convert_tokens_to_string
* empty commit to trigger CI
* fix tokenizer integration test of reformer
* remove code not needed anymore
* empty commit to trigger CI
* empty commit to trigger CI
* initial
* code quality test
* code quality
* added test functions in test_modeling_rag.py and test_retrieval_rag.py to test end2end retreiver
* minor change in test_modeling_rag
* fixed tests
* Update examples/research_projects/rag-end2end-retriever/README.md
typo corrected as suggested by lhoestq
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* Update examples/research_projects/rag-end2end-retriever/finetune_rag.py
type change suggested by lhoestq
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* Update src/transformers/models/rag/retrieval_rag.py
Adding this change as mentioned by lhoestq.
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* completed the minor changes suggested by the reviewers
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* Remove redundant `nn.log_softmax` in `run_flax_glue.py`
`optax.softmax_cross_entropy` expects unnormalized logits, and so it already calls `nn.log_softmax`, so I believe it is not needed here. `nn.log_softmax` is idempotent so mathematically it shouldn't have made a difference.
* Remove unused 'flax.linen' import
* Added logic to return attention from flax-bert model and added test cases to check that
* Added new line at the end of file to test_modeling_flax_common.py
* fixing code style
* Fixing Roberta and Elextra models too from cpoying bert
* Added temporary hack to not run test_attention_outputs for FlaxGPT2
* Returning attention weights from GPT2 and changed the tests accordingly.
* last fixes
* bump flax dependency
Co-authored-by: jayendra <jayendra@infocusp.in>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Adding new argument `max_new_tokens` for generate.
This is a proposal to add a new argument `max_new_tokens` to `generate`.
This include a `MaxNewTokensCriteria` that enables callers that don't
know about the token length ahead (like pipelines callers) to manage
more easily the length of their generated output.
* Adding a test for the user warning when both`max_length` and
`max_new_tokens` are used together.
* Removed redundant `no_grad`.