* Add PT + TF automatic builds
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Wrap up
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add data2vec model cloned from roberta
* Add checkpoint conversion script
* Fix copies
* Update docs
* Add checkpoint conversion script
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update documentation
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* add inputs to logits to data2vec'
* correct autio models
* correct config auto
* correct tok auto
* Update utils/tests_fetcher.py
* delete unnecessary files
* delete unnecessary files
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix copies
* Update docs
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update documentation
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* add inputs to logits to data2vec'
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* correct autio models
* correct config auto
* correct tok auto
* delete unnecessary files
* delete unnecessary files
* Update utils/tests_fetcher.py
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Move data2vec tests to new structure
* Fix test imports for text tests
* Remove fairseq files
* Change paper link to arxiv
* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.
* Update text model checkpoint to be facebook/data2vec-text-base
* Add 'Copy from' statements and update paper links and docs
* fix copy from statements
* improve copied from
* correct more copied from statements
* finish copied from stuff
* make style
* add model to README
* add to master
Co-authored-by: Eduardo Gonzalez Ponferrada <eduardo@ferrumhealth.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fixing the timestamps with chunking.
* The changes modified (and fixed) the striding tests.
* Adding a tokenizer test.
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Defense -> comment.
* Update src/transformers/models/wav2vec2/tokenization_wav2vec2.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* rebase
* Delete shift tokens func
* downsample decoder input seq len for init
* correct attention mask
* add tests
* pt flax cross test
* make fixup
* init file for import
* change pt-flax cross test threshold
* pt-flax test logits only
* move tests
* make repo-consistency
* consistent indentation
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* feat: initial implementation of convnext in tensorflow.
* fix: sample code for the classification model.
* chore: added checked for from the classification model.
* chore: set bias initializer in the classification head.
* chore: updated license terms.
* chore: removed ununsed imports
* feat: enabled argument during using drop_path.
* chore: replaced tf.identity with layers.Activation(linear).
* chore: edited default checkpoint.
* fix: minor bugs in the initializations.
* partial-fix: tf model errors for loading pretrained pt weights.
* partial-fix: call method updated
* partial-fix: cross loading of weights (4x3 variables to be matched)
* chore: removed unneeded comment.
* removed playground.py
* rebasing
* rebasing and removing playground.py.
* fix: renaming TFConvNextStage conv and layer norm layers
* chore: added initializers and other minor additions.
* chore: added initializers and other minor additions.
* add: tests for convnext.
* fix: integration tester class.
* fix: issues mentioned in pr feedback (round 1).
* fix: how output_hidden_states arg is propoagated inside the network.
* feat: handling of arg for pure cnn models.
* chore: added a note on equal contribution in model docs.
* rebasing
* rebasing and removing playground.py.
* feat: encapsulation for the convnext trunk.
* Fix variable naming; Test-related corrections; Run make fixup
* chore: added Joao as a contributor to convnext.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: corrected copyright year and added comment on NHWC.
* chore: fixed the black version and ran formatting.
* chore: ran make style.
* chore: removed from_pt argument from test, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* fix: tests in the convnext subclass, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: moved convnext test to the correct location
* fix: locations for the test file of convnext.
* fix: convnext tests.
* chore: applied sgugger's suggestion for dealing w/ output_attentions.
* chore: added comments.
* chore: applied updated quality enviornment style.
* chore: applied formatting with quality enviornment.
* chore: revert to the previous tests/test_modeling_common.py.
* chore: revert to the original test_modeling_common.py
* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py
* fix: tests for convnext.
* chore: removed output_attentions argument from convnext config.
* chore: revert to the earlier tf utils.
* fix: output shapes of the hidden states
* chore: removed unnecessary comment
* chore: reverting to the right test_modeling_tf_common.py.
* Styling nits
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* fix wrong method name tf.concatenate
* add tests related to causal LM / decoder
* make style and quality
* clean-up
* Fix TFBertModel's extended_attention_mask when past_key_values is provided
* Fix tests
* fix copies
* More tf.int8 -> tf.int32 in TF test template
* clean-up
* Update TF test template
* revert the previous commit + update the TF test template
* Fix TF template extended_attention_mask when past_key_values is provided
* Fix some styles manually
* clean-up
* Fix ValueError: too many values to unpack in the test
* Fix more: too many values to unpack in the test
* Add a comment for extended_attention_mask when there is past_key_values
* Fix TFElectra extended_attention_mask when past_key_values is provided
* Add tests to other TF models
* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder
* Fix not passing training arg to lm_head in TFRobertaForCausalLM
* Fix tests (with past) for TF Roberta
* add testing for pask_key_values for TFElectra model
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Adding the option to return_timestamps on pure CTC ASR models.
* Remove `math.prod` which was introduced in Python 3.8
* int are not floats.
* Reworking the PR to support "char" vs "word" output.
* Fixup!
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Quality.
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* custom_models: tiny doc addition
* mention security feature earlier in the section
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Enabling Beit SegFormer to `image-segmentation`.
* Fixing the score.
* Fix import ?
* Missing in type hint.
* Multiple test fixes:
- Add `raw_image` support. It should be the default IMHO since in Python
world it doesn't make any sense to base64 encode the image (Sorry
@mishig, didn't catch that in my review). I really think we should
consider breaking BC here.
- Add support for Segformer tiny test (needed
`SegformerModelTester.get_config` to enable TinyConfig
@NielsRogge)
- Add the check that `batch_size` works correctly on that pipeline.
Uncovered that it doesn't for Detr, which IMO is OK since images
after `feature_extractor` don't have the same size. Comment should
explain.
* Type hint as a string.
* Make fixup + update black.
* torch+vision protections.
* Don't use torchvision, use F.interpolate instead (no new dep).
* Last fixes for Segformer.
* Update test to reflect new image (which was broken)
* Update tests.
* Major BC modification:
- Removed the string compressed PNG string, that's a job for users
`transformers` stays in python land.
- Removed the `score` for semantic segmentation. It has hardly a meaning
on its own in this context.
- Don't include the grayscale with logits for now (which could enable
users to get a sense of confidence). Might be done later.
- Don't include the surface of the mask (could be used for sorting by
users, to filter out small masks). It's already calculable, and
it's easier to add later, than to add now and break later if we need.
* `make fixup`.
* Small changes.
* Rebase + doc fixup.
* [Proposal] Adding ZeroShotImageClassificationPipeline
- Based on CLIP
* WIP, Resurection in progress.
* Resurrection... achieved.
* Reword handling different `padding_value` for `feature_extractor` and
`tokenizer`.
* Thanks doc-builder !
* Adding docs + global namespace `ZeroShotImageClassificationPipeline`.
* Fixing templates.
* Make the test pass and be robust to floating error.
* Adressing suraj's comments on docs mostly.
* Tf support start.
* TF support.
* Update src/transformers/pipelines/zero_shot_image_classification.py
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>