* add minimal working gpt2 tokenizer
* graph mode and output equivalence tests working
* not today tensorflow. serialization test passing!
* fix style, documentation, docstrings and all that jazz
* passing consistency checks
* move keras nlp to tf dependencies
* fix tf modeling utils and gpt2 attention to enable compiling
* fix (I hope) keras nlp dependencies
* rever changes on generation
* remove debug prints
* remove redundant tf dummy objects
* add from config, get config and max length settings to address review
* let flake ignore the error on distillation you are welcome
* test from config
* add padding test
* address sgugger review
* Add Donut image processor
* Update src/transformers/image_transforms.py
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
* Fix docstrings
* Full var names in docstring
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
* First draft
* Make conversion script work
* Add id2label mapping, run code quality
* Fix copies
* Add first draft of feature extractor
* Update conversion script to use feature extractor
* Make more tests pass
* Add docs
* update input_features to input_values + pad by default to max length
* Fix doc tests
* Add feature extractor tests
* Add proper padding/truncation to feature extractor
* Add support for conversion of all audioset checkpoints
* Improve docs and extend conversion script
* Fix README
* Rename spectogram to spectrogram
* Fix copies
* Add integration test
* Remove dummy conv
* Update to ast
* Update organization
* Fix init
* Rename model to AST
* Add require_torchaudio annotator
* Move import of ASTFeatureExtractor under a is_speech_available
* Fix rebase
* Add pipeline config
* Update name of classifier head
* Rename time_dimension and frequency_dimension for clarity
* Remove print statement
* Fix pipeline test
* Fix pipeline test
* Fix index table
* Fix init
* Fix conversion script
* Rename to ForAudioClassification
* Fix index table
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* add model files etc for MobileNetV2
rename files for MobileNetV1
initial implementation of MobileNetV1
fix conversion script
cleanup
write docs
tweaks
fix conversion script
extract hidden states
fix test cases
make fixup
fixup it all
remove main from doc link
fixes
fix tests
fix up
use google org
fix weird assert
* fixup
* use google organization for checkpoints
* Add DiNAT
* Adds DiNAT + tests
* Minor fixes
* Added HF model
* Add natten to dependencies.
* Cleanup
* Minor fixup
* Reformat
* Optional NATTEN import.
* Reformat & add doc to _toctree
* Reformat (finally)
* Dummy objects for DiNAT
* Add NAT + minor changes
Adds NAT as its own independent model + docs, tests
Adds NATTEN to ext deps to ensure ci picks it up.
* Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests
* Minor fixes.
* Fix READMEs.
* Requested changes to docs + minor fixes.
* Requested changes.
* Add NAT/DiNAT tests to layoutlm_job
* Correction to Dinat doc.
* Requested changes.
* Add resources of OpenAI GPT
* Delete Deploy section and add .
* Add scripts
* Update docs/source/en/model_doc/openai-gpt.mdx
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Delete causal-language-modeling section
* Add TFOpenAIGPTLMHeadModel
* Add resources from community
* Delete a link
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Adds image-guided object detection method to OwlViTForObjectDetection class as described in the original paper. One-shot/ image-guided object detection enables users to use a query image to search for similar objects in the input image.
Co-Authored-By: Dhruv Karan k4r4n.dhruv@gmail.com
* WIP: Added CLIP resources from HuggingFace blog
* ADD: Notebooks documentation to clip
* Add link straight to notebook
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Change notebook links to colab
Co-authored-by: Ambuj Pawar <your_email@abc.example>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* allow loading projection in text and vision model
* begin tests
* finish test for CLIPTextModelTest
* style
* add slow tests
* add new classes for projection heads
* remove with_projection
* add in init
* add in doc
* fix tests
* fix some more tests
* fix copies
* fix docs
* remove leftover from fix-copies
* add the head models in IGNORE_NON_AUTO_CONFIGURED
* fix docstr
* fix tests
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add docstr for models
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add model files etc for MobileNetV2
* rename files for MobileNetV1
* initial implementation of MobileNetV1
* fix conversion script
* cleanup
* write docs
* tweaks
* fix conversion script
* extract hidden states
* fix test cases
* make fixup
* fixup it all
* rename V1 to V2
* fix checkpoints
* fixup
* implement first block + weight conversion
* add remaining layers
* add output stride and dilation
* fixup
* add tests
* add deeplabv3+ head
* a bit of fixup
* finish deeplab conversion
* add link to doc
* fix issue with JIT trace
in_height and in_width would be Tensor objects during JIT trace, which caused Core ML conversion to fail on the remainder op. By making them ints, the result of the padding calculation becomes a constant value.
* cleanup
* fix order of models
* fix rebase error
* remove main from doc link
* add image processor
* remove old feature extractor
* fix converter + other issues
* fixup
* fix unit test
* add to onnx tests (but these appear broken now)
* add post_process_semantic_segmentation
* use google org
* remove unused imports
* move args
* replace weird assert
* move generation_*.py src files into generation/*.py
* populate generation.__init__ with lazy loading
* move imports and references from generation.xxx.object to generation.object
* Add first draft
* Update conversion script
* Improve conversion script
* Improve conversion script some more
* Add conditional embeddings
* Add initial decoder
* Fix activation function of decoder
* Make decoder outputs match original implementation
* Make decoder outputs match original implementation
* Add more copied from statements
* Improve model outputs
* Fix auto tokenizer file
* Fix more tests
* Add test
* Improve README and docs, improve conditional embeddings
* Fix more tests
* Remove print statements
* Remove initial embeddings
* Improve conversion script
* Add interpolation of position embeddings
* Finish addition of interpolation of position embeddings
* Add support for refined checkpoint
* Fix refined checkpoint
* Remove unused parameter
* Improve conversion script
* Add support for training
* Fix conversion script
* Add CLIPSegFeatureExtractor
* Fix processor
* Fix CLIPSegProcessor
* Fix conversion script
* Fix most tests
* Fix equivalence test
* Fix README
* Add model to doc tests
* Use better variable name
* Convert other checkpoint as well
* Update config, add link to paper
* Add docs
* Update organization
* Replace base_model_prefix with clip
* Fix base_model_prefix
* Fix checkpoint of config
* Fix config checkpoint
* Remove file
* Use logits for output
* Fix tests
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* docs: Fix typo in ONNX parser help: 'tolerence' => 'tolerance'
* docs: Resolve many typos in the English docs
Typos found via 'codespell ./docs/source/en'
* initial commit
* First draft that gets outputs without crashing!
* Add all the ported openfold dependencies
* testing
* Restructure config files for ESMFold
* Debugging to find output discrepancies
* Mainly style
* Make model runnable without extra deps
* Remove utils and merge them to the modeling file
* Use correct gelu and remove some debug prints
* More cleanup
* Update esm docs
* Update conversion script to support ESMFold properly
* Port some top-level changes from ESMFold repo
* Expand EsmFold docstrings
* Make attention_mask optional (default to all 1s)
* Add inference test for ESMFold
* Use config and not n kwargs
* Add modeling output class
* Remove einops
* Remove chunking in ESM FFN
* Update tests for ESMFold
* Quality
* REpo consistency
* Remove tree dependency from ESMFold
* make fixup
* Add an error in case my structure map function breaks later
* Remove needless code
* Stop auto-casting the LM to float16 so CPU tests pass
* Stop auto-casting the LM to float16 so CPU tests pass
* Final test updates
* Split test file
* Copyright and quality
* Unpin PyTorch to see built doc
* Fix config file to_dict() method
* Add some docstrings to the output
* Skip TF checkpoint tests for ESM until we reupload those
* make fixup
* More docstrings
* Unpin to get even with main
* Flag example to write
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* Partial TF port for ESM model
* Add ESM-TF tests
* Add the various imports for TF-ESM
* TF weight conversion almost ready
* Stop ignoring the decoder weights in PT
* Add tests and lots of fixes
* fix-copies
* Fix imports, add model docs
* Add get_vocab() to tokenizer
* Fix vocab links for pretrained files
* Allow multiple inputs with a sep
* Use EOS as SEP token because ESM vocab lacks SEP
* Correctly return special tokens mask from ESM tokenizer
* make fixup
* Stop testing unsupported embedding resizing
* Handle TF bias correctly
* Skip all models with slow tokenizers in the token classification test
* Fixing the batch/unbatcher of pipelines to accomodate the `None` being
passed around.
* Fixing pipeline bug caused by slow tokenizer being different.
* Update src/transformers/models/esm/modeling_tf_esm.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/models/esm/modeling_tf_esm.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/models/esm/modeling_tf_esm.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update set_input_embeddings and the copyright notices
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>