TF port of ESM (#19587)

* Partial TF port for ESM model

* Add ESM-TF tests

* Add the various imports for TF-ESM

* TF weight conversion almost ready

* Stop ignoring the decoder weights in PT

* Add tests and lots of fixes

* fix-copies

* Fix imports, add model docs

* Add get_vocab() to tokenizer

* Fix vocab links for pretrained files

* Allow multiple inputs with a sep

* Use EOS as SEP token because ESM vocab lacks SEP

* Correctly return special tokens mask from ESM tokenizer

* make fixup

* Stop testing unsupported embedding resizing

* Handle TF bias correctly

* Skip all models with slow tokenizers in the token classification test

* Fixing the batch/unbatcher of pipelines to accomodate the `None` being

passed around.

* Fixing pipeline bug caused by slow tokenizer  being different.

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update set_input_embeddings and the copyright notices

Co-authored-by: Your Name <you@example.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
This commit is contained in:
Matt 2022-10-17 14:16:16 +01:00 committed by GitHub
parent d7754c43d0
commit 3b3024da70
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 1898 additions and 84 deletions

View File

@ -243,7 +243,7 @@ Flax), PyTorch, and/or TensorFlow.
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| ERNIE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ESM | ✅ | ❌ | ✅ | | ❌ |
| ESM | ✅ | ❌ | ✅ | | ❌ |
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |

View File

@ -107,3 +107,23 @@ and [Matt](https://huggingface.co/Rocketknight1).
[[autodoc]] EsmForTokenClassification
- forward
## TFEsmModel
[[autodoc]] TFEsmModel
- call
## TFEsmForMaskedLM
[[autodoc]] TFEsmForMaskedLM
- call
## TFEsmForSequenceClassification
[[autodoc]] TFEsmForSequenceClassification
- call
## TFEsmForTokenClassification
[[autodoc]] TFEsmForTokenClassification
- call

View File

@ -2462,6 +2462,16 @@ else:
]
)
_import_structure["models.encoder_decoder"].append("TFEncoderDecoderModel")
_import_structure["models.esm"].extend(
[
"ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEsmForMaskedLM",
"TFEsmForSequenceClassification",
"TFEsmForTokenClassification",
"TFEsmModel",
"TFEsmPreTrainedModel",
]
)
_import_structure["models.flaubert"].extend(
[
"TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
@ -5134,6 +5144,14 @@ if TYPE_CHECKING:
TFElectraPreTrainedModel,
)
from .models.encoder_decoder import TFEncoderDecoderModel
from .models.esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
TFEsmPreTrainedModel,
)
from .models.flaubert import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFlaubertForMultipleChoice,

View File

@ -47,6 +47,7 @@ TF_MODEL_MAPPING_NAMES = OrderedDict(
("distilbert", "TFDistilBertModel"),
("dpr", "TFDPRQuestionEncoder"),
("electra", "TFElectraModel"),
("esm", "TFEsmModel"),
("flaubert", "TFFlaubertModel"),
("funnel", ("TFFunnelModel", "TFFunnelBaseModel")),
("gpt2", "TFGPT2Model"),
@ -129,6 +130,7 @@ TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
("ctrl", "TFCTRLLMHeadModel"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForMaskedLM"),
("esm", "TFEsmForMaskedLM"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForMaskedLM"),
("gpt2", "TFGPT2LMHeadModel"),
@ -223,6 +225,7 @@ TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
("deberta-v2", "TFDebertaV2ForMaskedLM"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForMaskedLM"),
("esm", "TFEsmForMaskedLM"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForMaskedLM"),
("layoutlm", "TFLayoutLMForMaskedLM"),
@ -273,6 +276,7 @@ TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("deberta-v2", "TFDebertaV2ForSequenceClassification"),
("distilbert", "TFDistilBertForSequenceClassification"),
("electra", "TFElectraForSequenceClassification"),
("esm", "TFEsmForSequenceClassification"),
("flaubert", "TFFlaubertForSequenceClassification"),
("funnel", "TFFunnelForSequenceClassification"),
("gpt2", "TFGPT2ForSequenceClassification"),
@ -346,6 +350,7 @@ TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("deberta-v2", "TFDebertaV2ForTokenClassification"),
("distilbert", "TFDistilBertForTokenClassification"),
("electra", "TFElectraForTokenClassification"),
("esm", "TFEsmForTokenClassification"),
("flaubert", "TFFlaubertForTokenClassification"),
("funnel", "TFFunnelForTokenClassification"),
("layoutlm", "TFLayoutLMForTokenClassification"),

View File

@ -122,6 +122,7 @@ else:
),
("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("esm", ("EsmTokenizer", None)),
("flaubert", ("FlaubertTokenizer", None)),
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
("fsmt", ("FSMTTokenizer", None)),

View File

@ -17,7 +17,7 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_import_structure = {
@ -40,6 +40,21 @@ else:
"EsmPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_esm"] = [
"TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEsmForMaskedLM",
"TFEsmForSequenceClassification",
"TFEsmForTokenClassification",
"TFEsmModel",
"TFEsmPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig
@ -60,6 +75,21 @@ if TYPE_CHECKING:
EsmPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
TFEsmPreTrainedModel,
)
else:
import sys

View File

@ -1,5 +1,5 @@
# coding=utf-8
# Copyright 2022 Facebook and The HuggingFace Inc. team. All rights reserved.
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -42,12 +42,14 @@ from .configuration_esm import EsmConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/esm-1b"
_CHECKPOINT_FOR_DOC = "Rocketknight1/esm2_t6_8M_UR50D"
_CONFIG_FOR_DOC = "EsmConfig"
_TOKENIZER_FOR_DOC = "EsmTokenizer"
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/esm-1b",
"Rocketknight1/esm2_t6_8M_UR50D",
"Rocketknight1/esm2_t12_35M_UR50D",
# This is not a complete list of all ESM models!
# See all ESM models at https://huggingface.co/models?filter=esm
]
@ -115,7 +117,6 @@ class EsmEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
if config.emb_layer_norm_before:
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
@ -658,15 +659,6 @@ class EsmPreTrainedModel(PreTrainedModel):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def update_keys_to_ignore(self, config, del_keys_to_ignore):
"""Remove some keys from ignore list"""
if not config.tie_word_embeddings:
# must make a new list, or the class variable gets modified!
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore]
self._keys_to_ignore_on_load_missing = [
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore
]
ESM_START_DOCSTRING = r"""
@ -907,8 +899,7 @@ class EsmModel(EsmPreTrainedModel):
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
class EsmForMaskedLM(EsmPreTrainedModel):
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
@ -923,9 +914,6 @@ class EsmForMaskedLM(EsmPreTrainedModel):
self.esm = EsmModel(config, add_pooling_layer=False)
self.lm_head = EsmLMHead(config)
# The LM head weights require special treatment only when they are tied with the word embeddings
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
self.init_weights()
def get_output_embeddings(self):
@ -944,17 +932,17 @@ class EsmForMaskedLM(EsmPreTrainedModel):
)
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -1009,17 +997,13 @@ class EsmLMHead(nn.Module):
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
x = self.decoder(x) + self.bias
return x
@ -1052,15 +1036,15 @@ class EsmForSequenceClassification(EsmPreTrainedModel):
)
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
@ -1148,15 +1132,15 @@ class EsmForTokenClassification(EsmPreTrainedModel):
)
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
# coding=utf-8
# Copyright Facebook and The HuggingFace Inc. team. All rights reserved.
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -27,12 +27,18 @@ VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/esm1b": "https://huggingface.co/facebook/esm1b/resolve/main/vocab.txt",
"Rocketknight1/esm2_t6_8M_UR50D": (
"https://huggingface.co/Rocketknight1/esm2_t6_8M_UR50D/resolve/main/vocab.txt"
),
"Rocketknight1/esm2_t12_35M_UR50D": (
"https://huggingface.co/Rocketknight1/esm2_t12_35M_UR50D/resolve/main/vocab.txt"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/esm1b": 1024,
"Rocketknight1/esm2_t6_8M_UR50D": 1024,
"Rocketknight1/esm2_t12_35M_UR50D": 1024,
}
@ -77,6 +83,9 @@ class EsmTokenizer(PreTrainedTokenizer):
def get_vocab_size(self, with_added_tokens=False):
return len(self._id_to_token)
def get_vocab(self):
return {token: i for i, token in enumerate(self.all_tokens)}
def token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
@ -86,11 +95,42 @@ class EsmTokenizer(PreTrainedTokenizer):
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.eos_token_id]
cls = [self.cls_token_id]
sep = [self.eos_token_id] # No sep token in ESM vocabulary
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of ids of the first sequence.
token_ids_1 (`List[int]`, *optional*):
List of ids of the second sequence.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
mask = [1] + ([0] * len(token_ids_0)) + [1]
if token_ids_1 is not None:
raise ValueError("Multiple input sentences are not supported!")
cls_: List[int] = [self.cls_token_id]
eos_: List[int] = [self.eos_token_id]
return cls_ + token_ids_0 + eos_
mask += [0] * len(token_ids_1) + [1]
return mask
def save_vocabulary(self, save_directory, filename_prefix):
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")

View File

@ -138,7 +138,7 @@ class FillMaskPipeline(Pipeline):
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask)
proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode(p), "sequence": sequence}
proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence}
row.append(proposition)
result.append(row)
if single_mask:

View File

@ -83,7 +83,10 @@ class PipelineIterator(IterableDataset):
elif isinstance(element[0], np.ndarray):
loader_batched[k] = tuple(np.expand_dims(el[self._loader_batch_index], 0) for el in element)
continue
if isinstance(element[self._loader_batch_index], torch.Tensor):
if element is None:
# This can happen for optional data that get passed around
loader_batched[k] = None
elif isinstance(element[self._loader_batch_index], torch.Tensor):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers

View File

@ -1142,6 +1142,44 @@ class TFEncoderDecoderModel(metaclass=DummyObject):
requires_backends(self, ["tf"])
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFEsmForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None

View File

@ -240,6 +240,14 @@ class EsmModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
@unittest.skip("Esm does not support embedding resizing")
def test_resize_embeddings_untied(self):
pass
@unittest.skip("Esm does not support embedding resizing")
def test_resize_tokens_embeddings(self):
pass
@require_torch
class EsmModelIntegrationTest(TestCasePlus):
@ -270,24 +278,3 @@ class EsmModelIntegrationTest(TestCasePlus):
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
def test_lm_head_ignore_keys(self):
from copy import deepcopy
keys_to_ignore_on_save_tied = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
keys_to_ignore_on_save_untied = [r"lm_head.decoder.bias"]
config = EsmConfig.from_pretrained("Rocketknight1/esm2_t6_8M_UR50D")
config_tied = deepcopy(config)
config_tied.tie_word_embeddings = True
config_untied = deepcopy(config)
config_untied.tie_word_embeddings = False
for cls in [EsmForMaskedLM]:
model = cls(config_tied)
self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_tied, cls)
# the keys should be different when embeddings aren't tied
model = cls(config_untied)
self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_untied, cls)
# test that saving works with updated ignore keys - just testing that it doesn't fail
model.save_pretrained(self.get_auto_remove_tmp_dir())

View File

@ -0,0 +1,287 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
# copied from tests.test_modeling_tf_roberta
class TFEsmModelTester:
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = EsmConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
pad_token_id=1,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = TFEsmModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFEsmModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, encoder_hidden_states=encoder_hidden_states)
# Also check the case where encoder outputs are not passed
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFEsmForMaskedLM(config=config)
result = model([input_ids, input_mask])
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFEsmForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TFEsmModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFEsmModelTester(self)
self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
"""Test the base model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_decoder(self):
"""Test the base model as a decoder (of an encoder-decoder architecture)
is_deocder=True + cross_attention + pass encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFEsmModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip("Protein models do not support embedding resizing.")
def test_resize_token_embeddings(self):
pass
@unittest.skip("Protein models do not support embedding resizing.")
def test_save_load_after_resize_token_embeddings(self):
pass
@require_tf
class TFEsmModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
model = TFEsmForMaskedLM.from_pretrained("Rocketknight1/esm2_t6_8M_UR50D")
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
expected_shape = [1, 6, 33]
self.assertEqual(list(output.numpy().shape), expected_shape)
# compare the actual values for a slice.
expected_slice = tf.constant(
[[[15.0963, -6.6414, -1.1346], [-0.2209, -9.9633, 4.2082], [-1.6045, -10.0011, 1.5882]]]
)
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
@slow
def test_inference_no_head(self):
model = TFEsmModel.from_pretrained("Rocketknight1/esm2_t6_8M_UR50D")
input_ids = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
output = model(input_ids)[0]
# compare the actual values for a slice.
expected_slice = tf.constant(
[
[
[0.144337, 0.541198, 0.32479298],
[0.30328932, 0.00519154, 0.31089523],
[0.32273883, -0.24992886, 0.34143737],
]
]
)
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))

View File

@ -44,6 +44,8 @@ class TokenClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTest
def run_pipeline_test(self, token_classifier, _):
model = token_classifier.model
tokenizer = token_classifier.tokenizer
if not tokenizer.is_fast:
return # Slow tokenizers do not return offsets mappings, so this test will fail
outputs = token_classifier("A simple string")
self.assertIsInstance(outputs, list)