* docs: replace torch.distributed.run by torchrun
`transformers` now officially support pytorch >= 1.10.
The entrypoint `torchrun`` is present from 1.10 onwards.
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
* Update src/transformers/trainer.py
with @ArthurZucker's suggestion
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Fix mistral generate for long prompt / response
* Add unit test
* fix linter
* fix linter
* fix test
* add assisted generation test for mistral and load the model in 4 bit + fa2
* Successfully resolved the ZeroDivisionError exception in the utils.notebook.y file.
* Now I update little code mentioned by Peter
* Using Black package to reformat my file
* Now I using ruff libary to reformated my file
Change "convert predictions to logits" to "convert logits to
predictions" to fix semantic error in the evaluation section. Logits
need to be converted to predictions to evaluate the accuracy, not the
other way round
* Fix typo in warning message
The path of `default_cache_path` is hf_cache_home/hub. There is no
directory named transformers under hf_cache_home
* Fix a typo in comment
* Update the version number
v4.22.0 is the earlist version that contains those changes in PR #18492
* added flash attention for opt
* added to list
* fix use cache (#3)
* style fix
* fix text
* test fix2
* reverted until 689f599
* torch fx tests are working now!
* small fix
* added TODO docstring
* changes
* comments and .md file modification
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* initial commit
* Add inital testing files and modify __init__ files to add UnivNet imports.
* Fix some bugs
* Add checkpoint conversion script and add references to transformers pre-trained model.
* Add UnivNet entries for auto.
* Add initial docs for UnivNet.
* Handle input and output shapes in UnivNetGan.forward and add initial docstrings.
* Write tests and make them pass.
* Write docs.
* Add UnivNet doc to _toctree.yml and improve docs.
* fix typo
* make fixup
* make fix-copies
* Add upsample_rates parameter to config and improve config documentation.
* make fixup
* make fix-copies
* Remove unused upsample_rates config parameter.
* apply suggestions from review
* make style
* Verify and add reason for skipped tests inherited from ModelTesterMixin.
* Add initial UnivNetGan integration tests
* make style
* Remove noise_length input to UnivNetGan and improve integration tests.
* Fix bug and make style
* Make UnivNet integration tests pass
* Add initial code for UnivNetFeatureExtractor.
* make style
* Add initial tests for UnivNetFeatureExtractor.
* make style
* Properly initialize weights for UnivNetGan
* Get feature extractor fast tests passing
* make style
* Get feature extractor integration tests passing
* Get UnivNet integration tests passing
* make style
* Add UnivNetGan usage example
* make style and use feature extractor from hub in integration tests
* Update tips in docs
* apply suggestions from review
* make style
* Calculate padding directly instead of using get_padding methods.
* Update UnivNetFeatureExtractor.to_dict to be UnivNet-specific.
* Update feature extractor to support using model(**inputs) and add the ability to generate noise and pad the end of the spectrogram in __call__.
* Perform padding before generating noise to ensure the shapes are correct.
* Rename UnivNetGan.forward's noise_waveform argument to noise_sequence.
* make style
* Add tests to test generating noise and padding the end for UnivNetFeatureExtractor.__call__.
* Add tests for checking batched vs unbatched inputs for UnivNet feature extractor and model.
* Add expected mean and stddev checks to the integration tests and make them pass.
* make style
* Make it possible to use model(**inputs), where inputs is the output of the feature extractor.
* fix typo in UnivNetGanConfig example
* Calculate spectrogram_zero from other config values.
* apply suggestions from review
* make style
* Refactor UnivNet conversion script to use load_state_dict (following persimmon).
* Rename UnivNetFeatureExtractor to UnivNetGanFeatureExtractor.
* make style
* Switch to using torch.tensor and torch.testing.assert_close for testing expected values/slices.
* make style
* Use config in UnivNetGan modeling blocks.
* make style
* Rename the spectrogram argument of UnivNetGan.forward to input_features, following Whisper.
* make style
* Improving padding documentation.
* Add UnivNet usage example to the docs.
* apply suggestions from review
* Move dynamic_range_compression computation into the mel_spectrogram method of the feature extractor.
* Improve UnivNetGan.forward return docstring.
* Update table in docs/source/en/index.md.
* make fix-copies
* Rename UnivNet components to have pattern UnivNet*.
* make style
* make fix-copies
* Update docs
* make style
* Increase tolerance on flaky unbatched integration test.
* Remove torch.no_grad decorators from UnivNet integration tests to try to avoid flax/Tensorflow test errors.
* Add padding_mask argument to UnivNetModel.forward and add batch_decode feature extractor method to remove padding.
* Update documentation and clean up padding code.
* make style
* make style
* Remove torch dependency from UnivNetFeatureExtractor.
* make style
* Fix UnivNetModel usage example
* Clean up feature extractor code/docstrings.
* apply suggestions from review
* make style
* Add comments for tests skipped via ModelTesterMixin flags.
* Add comment for model parallel tests skipped via the test_model_parallel ModelTesterMixin flag.
* Add # Copied from statements to copied UnivNetFeatureExtractionTest tests.
* Simplify UnivNetFeatureExtractorTest.test_batch_decode.
* Add support for unbatched padding_masks in UnivNetModel.forward.
* Refactor unbatched padding_mask support.
* make style
* [Whisper] Add seq gen
* [Whisper] Add seq gen
* more debug
* Fix whisper logit processor
* Improve whisper code further
* Fix more
* more debug
* more debug
* Improve further
* Add tests
* Prep for batch size > 1
* Get batch_size>1 working
* Correct more
* Add extensive tests
* more debug
* more debug
* more debug
* add more tests
* more debug
* Apply suggestions from code review
* more debug
* add comments to explain the code better
* add comments to explain the code better
* add comments to explain the code better
* Add more examples
* add comments to explain the code better
* fix more
* add comments to explain the code better
* add comments to explain the code better
* correct
* correct
* finalize
* Apply suggestions from code review
* Apply suggestions from code review
* Fix `resize_token_embeddings` about `requires_grad`
The method `resize_token_embeddings` should keep `requires_grad`
unchanged for all parameters in embeddings.
Previously, `resize_token_embeddings` always set `requires_grad`
to `True`. After fixed, `resize_token_embeddings` copy the
`requires_grad` attribute in the old embeddings.
* tvp model for video grounding
add tokenizer auto
fix param in TVPProcessor
add docs
clear comments and enable different torch dtype
add image processor test and model test and fix code style
* fix conflict
* fix model doc
* fix image processing tests
* fix tvp tests
* remove torch in processor
* fix grammar error
* add more details on tvp.md
* fix model arch for loss, grammar, and processor
* add docstring and do not regard TvpTransformer, TvpVisionModel as individual model
* use pad_image
* update copyright
* control first downsample stride
* reduce first only works for ResNetBottleNeckLayer
* fix param name
* fix style
* add testing
* fix style
* rm init_weight
* fix style
* add post init
* fix comments
* do not test TvpTransformer
* fix warning
* fix style
* fix example
* fix config map
* add link in config
* fix comments
* fix style
* rm useless param
* change attention
* change test
* add notes
* fix comments
* fix tvp
* import checkpointing
* fix gradient checkpointing
* Use a more accurate example in readme
* update
* fix copy
* fix style
* update readme
* delete print
* remove tvp test_forward_signature
* remove TvpTransformer
* fix test init model
* merge main and make style
* fix tests and others
* fix image processor
* fix style and model_input_names
* fix tests
* fix image_attention gate in idefics modeling
* update comment
* cleaner gating
* fix gate condition
* create attention gate once
* update comment
* update doc of cross-attention forward
* improve comment
* bring back no_images
* pass cross_attention_gate similarly to no_images gate
* add information on gate shape
* fix no_images placement
* make tests for gate
* take off no_images logic
* update test based on comments
* raise value error if cross_attention_gate is None
* send cross_attention_gate to device
* Revert "send cross_attention_gate to device"
This reverts commit 054f842284.
* send cross_attention_gate to device
* fix device in test + nit
* fill hidden_states with zeros instead of multiplying with the gate
* style
* Update src/transformers/models/idefics/modeling_idefics.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/idefics/modeling_idefics.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>