mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
c989ddd294
143 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
6a5fd0c6d2
|
Reword README in light of model definitions (#38762)
* Slight readme reword * reword * reword * reword * Slight readme reword |
||
![]() |
6acd5aecb3
|
Adding Qwen3 and Qwen3MoE (#36878)
* Initial commit for Qwen3 * fix and add tests for qwen3 & qwen3_moe * rename models for tests. * fix * fix * fix and add docs. * fix model name in docs. * simplify modular and fix configuration issues * Fix the red CI: ruff was updated * revert ruff, version was wrong * fix qwen3moe. * fix * make sure MOE can load * fix copies --------- Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com> |
||
![]() |
c0f8d055ce
|
[docs] Redesign (#31757)
* toctree * not-doctested.txt * collapse sections * feedback * update * rewrite get started sections * fixes * fix * loading models * fix * customize models * share * fix link * contribute part 1 * contribute pt 2 * fix toctree * tokenization pt 1 * Add new model (#32615) * v1 - working version * fix * fix * fix * fix * rename to correct name * fix title * fixup * rename files * fix * add copied from on tests * rename to `FalconMamba` everywhere and fix bugs * fix quantization + accelerate * fix copies * add `torch.compile` support * fix tests * fix tests and add slow tests * copies on config * merge the latest changes * fix tests * add few lines about instruct * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix tests --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * "to be not" -> "not to be" (#32636) * "to be not" -> "not to be" * Update sam.md * Update trainer.py * Update modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py * fix hfoption tag * tokenization pt. 2 * image processor * fix toctree * backbones * feature extractor * fix file name * processor * update not-doctested * update * make style * fix toctree * revision * make fixup * fix toctree * fix * make style * fix hfoption tag * pipeline * pipeline gradio * pipeline web server * add pipeline * fix toctree * not-doctested * prompting * llm optims * fix toctree * fixes * cache * text generation * fix * chat pipeline * chat stuff * xla * torch.compile * cpu inference * toctree * gpu inference * agents and tools * gguf/tiktoken * finetune * toctree * trainer * trainer pt 2 * optims * optimizers * accelerate * parallelism * fsdp * update * distributed cpu * hardware training * gpu training * gpu training 2 * peft * distrib debug * deepspeed 1 * deepspeed 2 * chat toctree * quant pt 1 * quant pt 2 * fix toctree * fix * fix * quant pt 3 * quant pt 4 * serialization * torchscript * scripts * tpu * review * model addition timeline * modular * more reviews * reviews * fix toctree * reviews reviews * continue reviews * more reviews * modular transformers * more review * zamba2 * fix * all frameworks * pytorch * supported model frameworks * flashattention * rm check_table * not-doctested.txt * rm check_support_list.py * feedback * updates/feedback * review * feedback * fix * update * feedback * updates * update --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com> |
||
![]() |
a957b7911a
|
Add SigLIP 2 (#36323)
* Docs * Inits * Auto classes * Add siglip base * Add base tests * Fix Siglip V1 for fix res version * Add image processor * Update conversion * Experimenting with vectorized embeddings * Fixup * Add modular Siglip2Processor * Add modular configuration * Rename num patches * Correct image and text features merging * Working conversion script * Refactoring conversion script * Remove unused code in conversion script * Shorten dict a bit * Refactoring conversion * Done conversion refactoring * Fixup * Modular siglip2 * Make model exportable and compilable without graph breaks * Remove position_ids from image_processor * REmove position ids from modeling file * Update modular * Type hint * Fixup * Set defaults to processor * Add integration test * Revert spatial shapes back to tensor * Change order * Fix most of the tests * Fix docstring * Remove interpolate_pos_encoding arg (not needed) * Update docs * Standardize processing * Fix attention_mask in vision head * Siglip v1: remove double transpose in FA2 * Update modular file * Update FA2 test * Update expected logits * Fix interpolation for siglip2 image processor * Skip init test * Skip dispatch on flash test * Fix modeling tests * Fixup * Add dummy objects * Fix some docstrings * Add siglip2 in index.md * Fix consistency * Add docs * Remove size and data format * Add image processor tests * Fix * Add fast image processor * Fix style * Fix * Docs * Set lowercase for tokenizer * Adjust head size for Siglip v1 * Update siglip2 for consistency with siglip1 * Update siglip2 conversion * Update pipeline * Update checkpoints in tests * Update checkpoint name * Fix pooling for image classification model * Fix FA2 test * Update processor * Fix check repo * Update docs * Fix typos * Fix docstring for fast image processor * Add siglip2 to FA2 docs * Fix fast ip tests * Fix constitency * Fix tokenizer class for siglip v1 * Fix missing header * Refactor scaling for clip, siglip, siglip2 * Remove unused imports * Make fast IP default for siglip2 * Update docs * Update checkpoints * Update modular * Update paper link * Fixup * Fix name in toctree * Fix test |
||
![]() |
4397dfcb71
|
SmolVLM2 (#36126)
* smolvlm init * updates * fixing bugs * minimal run, no checks * minimal run, no checks * passing first check + adding url support * updating video dataloading logic * fixing image logic * trying modular, but fails * modular is working, changing processor to match PR comments and general transformers logic * fixing kwargs * offloading video loading logic to image_util * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * update * add idefics3-based tests * add keyword to all * add PreTrainedModel * updateing video loading logic * working inference * updates for PR comments * updates for PR comments * moving SmolVLMPretrainedModel higher to fix import error * CI test pass * CI test pass * removing lambda * CI test pass * CI test pass * CI test pass * CI test pass * CI test pass * CI test pass * processor tests * add example in docs * typo * fix copies * skip compile tests - sdpa for VisionTransformer * fix init * raise import error for num2words * update doc for FA2 * more doc fix * CI * updates for PR comments * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Joshua Lochner <admin@xenova.com> * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * fixing processor -- tokenizer not defined properly, (gpt2 tokenizer), and does not have the attributes of fake image token, etc * adding smolvlm to VQA models * removing vqa auto class * Update src/transformers/models/smolvlm/processing_smolvlm.py Co-authored-by: Joshua Lochner <admin@xenova.com> * removing smolvlmvisiontransformer from index.md * my bad, video processing had typos * fixing docs * renaming params in SmolVLMModel.inputs_merger * removing un-needed dtype/device in model forward * ruff for CI * update docs * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * return cache position * return cache position * return cache also in modular * needed to run modular again * fix training tests * push vectorized inputs merger * format * format * reduce number of mappings * addressing PR comments * happy CI, happy me :) * skip non-nested images * adjust integration test for smaller GPUs * format * fix kwargs in chat template apply * skip this for now --------- Co-authored-by: raushan <raushan@huggingface.co> Co-authored-by: Pablo <pablo.montalvo.leroux@gmail.com> Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: Joshua Lochner <admin@xenova.com> |
||
![]() |
a570e2ba87
|
add shared experts for upcoming Granite 4.0 language models (#35894)
* Modular GraniteMoE with shared Experts. Signed-off-by: Shawn Tan <shawntan@ibm.com> * Modified * Import order. * Modified for style * Fix space. * Test * Remove extra granitemoe file. * New converted file and tests * Modified __init__ files. * Formatting. * Dummy PT objects * register granitemoe shared model Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> * fix linting of a file Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> * fix import in modeling file Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> * update generated modeling file Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> * add documentation Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> * update docstrings Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> * update generated modeling file Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> * fix docstrings in config class Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> * merge main Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> --------- Signed-off-by: Shawn Tan <shawntan@ibm.com> Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> Co-authored-by: Shawn Tan <shawntan@ibm.com> Co-authored-by: Shawn Tan <shawn@wtf.sg> Co-authored-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com> Co-authored-by: Sukriti Sharma <Ssukriti@users.noreply.github.com> |
||
![]() |
9a6be63fdb
|
Add Apple's Depth-Pro for depth estimation (#34583)
* implement config and model building blocks * refactor model architechture * update model outputs * update init param to include use_fov_model * update param name in config * fix hidden_states and attentions outputs for fov * sort config * complete minor todos * update patching * update config for encoder * fix config * use correct defaults in config * update merge for compatibility with different image size * restructure encoder for custom configuration * make fov model compatible with custom config * replace word "decoder" with "fusion" * weight conversion script * fix fov squeeze * update conversion script (without test) * upload ruff image processing * create fast image processing * use torch interpolation for image processing * complete post_process_depth_estimation * config: fix imports and sort args * apply inference in weight conversion * use mllama script instead for weight conversion * clean weight conversion script * add depth-pro status in other files * fill docstring in config * formatting * more formatting * formatting with ruff * formatting with style * fix copied classes * add examples; update weight convert script * fix using check_table.py and isort * fix config docstring * add depth pro to sdpa docs * undo unintentional changes in configuration_gemma.py * minor fixes * test image processing * fixes and tests * more fixes * use output states from image_encoder instead * Revert "use output states from image_encoder instead" This reverts commit |
||
![]() |
006d9249ec
|
Adding RT-DETRv2 for object detection (#34773)
* cookiecutter add rtdetrv2 * make modular working * working modelgit add . * working modelgit add . * finalize moduar inheritence * finalize moduar inheritence * Update src/transformers/models/rtdetrv2/modular_rtdetrv2.py Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com> * update modular and add rename * remove output ckpt * define loss_kwargs * fix CamelCase naming * fix naming + files * fix modular and convert file * additional changes * fix modular * fix import error (switch to lazy) * fix autobackbone * make style * add * update testing * fix loss * remove old folder * fix testing for v2 * update docstring * fix docstring * add resnetv2 (with modular bug to fix) * remove resnetv2 backbone * fix changes * small fixes * remove rtdetrv2resnetconfig * add rtdetrv2 name to convert * make style * Update docs/source/en/model_doc/rt_detr_v2.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update src/transformers/models/rt_detr_v2/modular_rt_detr_v2.py Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update src/transformers/models/rt_detr_v2/modular_rt_detr_v2.py Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * fix modular typo after review * add reviewed changes * add final review changes * Update docs/source/en/model_doc/rt_detr_v2.md Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com> * Update src/transformers/models/rt_detr_v2/__init__.py Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com> * Update src/transformers/models/rt_detr_v2/convert_rt_detr_v2_weights_to_hf.py Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com> * add review changes * remove rtdetrv2 resnet * removing this weird project change * change ckpt name from jadechoghari to author * implement review and update testing * update naming and remove wrong ckpt * name * make fix-copies * Fix RT-DETR loss * Add resources, fix name * Fix repo in docs * Fix table name --------- Co-authored-by: jadechoghari <jadechoghari@users.noreply.huggingface.co> Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com> Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> Co-authored-by: qubvel <qubvel@gmail.com> |
||
![]() |
8d73a38606
|
Add DAB-DETR for object detection (#30803)
* initial commit * encoder+decoder layer changes WIP * architecture checks * working version of detection + segmentation * fix modeling outputs * fix return dict + output att/hs * found the position embedding masking bug * pre-training version * added iamge processors * typo in init.py * iterupdate set to false * fixed num_labels in class_output linear layer bias init * multihead attention shape fixes * test improvements * test update * dab-detr model_doc update * dab-detr model_doc update2 * test fix:test_retain_grad_hidden_states_attentions * config file clean and renaming variables * config file clean and renaming variables fix * updated convert_to_hf file * small fixes * style and qulity checks * return_dict fix * Merge branch main into add_dab_detr * small comment fix * skip test_inputs_embeds test * image processor updates + image processor test updates * check copies test fix update * updates for check_copies.py test * updates for check_copies.py test2 * tied weights fix * fixed image processing tests and fixed shared weights issues * added numpy nd array option to get_Expected_values method in test_image_processing_dab_detr.py * delete prints from test file * SafeTensor modification to solve HF Trainer issue * removing the safetensor modifications * make fix copies and hf uplaod has been added. * fixed index.md * fixed repo consistency * styel fix and dabdetrimageprocessor docstring update * requested modifications after the first review * Update src/transformers/models/dab_detr/image_processing_dab_detr.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * repo consistency has been fixed * update copied NestedTensor function after main merge * Update src/transformers/models/dab_detr/modeling_dab_detr.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * temp commit * temp commit2 * temp commit 3 * unit tests are fixed * fixed repo consistency * updated expected_boxes varible values based on related notebook results in DABDETRIntegrationTests file. * temporarialy config modifications and repo consistency fixes * Put dilation parameter back to config * pattern embeddings have been added to the rename_keys method * add dilation comment to config + add as an exception in check_config_attributes SPECIAL CASES * delete FeatureExtractor part from docs.md * requested modifications in modeling_dab_detr.py * [run_slow] dab_detr * deleted last segmentation code part, updated conversion script and changed the hf path in test files * temp commit of requested modifications * temp commit of requested modifications 2 * updated config file, resolved codepaths and refactored conversion script * updated decodelayer block types and refactored conversion script * style and quality update * small modifications based on the request * attentions are refactored * removed loss functions from modeling file, added loss function to lossutils, tried to move the MLP layer generation to config but it failed * deleted imageprocessor * fixed conversion script + quality and style * fixed config_att * [run_slow] dab_detr * changing model path in conversion file and in test file * fix Decoder variable naming * testing the old loss function * switched back to the new loss function and testing with the odl attention functions * switched back to the new last good result modeling file * moved back to the version when I asked the review * missing new line at the end of the file * old version test * turn back to newest mdoel versino but change image processor * style fix * style fix after merge main * [run_slow] dab_detr * [run_slow] dab_detr * added device and type for head bias data part * [run_slow] dab_detr * fixed model head bias data fill * changed test_inference_object_detection_head assertTrues to torch test assert_close * fixes part 1 * quality update * self.bbox_embed in decoder has been restored * changed Assert true torch closeall methods to torch testing assertclose * modelcard markdown file has been updated * deleted intemediate list from decoder module --------- Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> |
||
![]() |
2b46943195
|
Add GOT-OCR 2.0 to Transformers (#34721)
* init modular got_ocr2 * Get correct got_ocr architecture * add processing * run modular with processing * add working inference * apply modular * Refactor and fix style * Refactor, cleanup, fix style * fix init order * Fix docs * add base modeling tests * fix style and consistency * rename doc file * fix repo consistency * fix inference with box * add image processing and support for crop_to_multi_page * Fix batch inference * add tests * fixup * fix slow test * fix docstrings * Add model doc * update to new init * fix input autocast pixel_values dtype * update doc * move doc to multimodal * Reformat crop_image_to_patches and add docstrings * Fix example in forward docstring * Address Pablo review * [run slow] got_ocr2 * remove defaults defined twice * apply modular * add torch_device to integration tests * update modular * follow-up Pavel review * add device variable in doc * fix doc multi-page * Force eager attention for vision encoder to avoid attn implementation conflict * revert qwen2vl doc changes * use Qwen2ForCausalLM instead of Qwen2Model * make fixup * refactor gotocr2 to llava style * uniformize function names and reduce checks * final nits * fix pixel_values dtype error * change checkpoint names * fix modular |
||
![]() |
33cb1f7b61
|
Add Zamba2 (#34517)
* First commit
* Finish model implementation
* First commit
* Finish model implementation
* Register zamba2
* generated modeling and configuration
* generated modeling and configuration
* added hybrid cache
* fix attention_mask in mamba
* dropped unused loras
* fix flash2
* config docstrings
* fix config and fwd pass
* make fixup fixes
* text_modeling_zamba2
* small fixes
* make fixup fixes
* Fix modular model converter
* added inheritances in modular, renamed zamba cache
* modular rebase
* new modular conversion
* fix generated modeling file
* fixed import for Zamba2RMSNormGated
* modular file cleanup
* make fixup and model tests
* dropped inheritance for Zamba2PreTrainedModel
* make fixup and unit tests
* Add inheritance of rope from GemmaRotaryEmbedding
* moved rope to model init
* drop del self.self_attn and del self.feed_forward
* fix tests
* renamed lora -> adapter
* rewrote adapter implementation
* fixed tests
* Fix torch_forward in mamba2 layer
* Fix torch_forward in mamba2 layer
* Fix torch_forward in mamba2 layer
* Dropped adapter in-place sum
* removed rope from attention init
* updated rope
* created get_layers method
* make fixup fix
* make fixup fixes
* make fixup fixes
* update to new attention standard
* update to new attention standard
* make fixup fixes
* minor fixes
* cache_position
* removed cache_position postion_ids use_cache
* remove config from modular
* removed config from modular (2)
* import apply_rotary_pos_emb from llama
* fixed rope_kwargs
* Instantiate cache in Zamba2Model
* fix cache
* fix @slow decorator
* small fix in modular file
* Update docs/source/en/model_doc/zamba2.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* several minor fixes
* inherit mamba2decoder fwd and drop position_ids in mamba
* removed docstrings from modular
* reinstate zamba2 attention decoder fwd
* use regex for tied keys
* Revert "use regex for tied keys"
This reverts commit
|
||
![]() |
f3f6c86582
|
add qwen2.5vl (#35569)
* add qwen2.5vl * fix * pass check table * add modular file * fix style * Update src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py Co-authored-by: Minho Shim <6764739+minostauros@users.noreply.github.com> * Update src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py Co-authored-by: Minho Shim <6764739+minostauros@users.noreply.github.com> * Update src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py Co-authored-by: Minho Shim <6764739+minostauros@users.noreply.github.com> * padd copy check * use modular * fix * fix * fix * update flashatt2&sdpa support_list * Update docs/source/en/_toctree.yml Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/qwen2_5_vl.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/qwen2_5_vl.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/qwen2_5_vl.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/qwen2_5_vl.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * update config * update * fix hf path * rename Qwen2_5_VLVideosKwargs * fix * fix * update * excuted modular * rollback init * fix * formated * simpler init * fix * fix * fix * fix * fix * update docs * fix * fix * update Qwen2VLRotaryEmbedding for yarn * fix --------- Co-authored-by: Minho Shim <6764739+minostauros@users.noreply.github.com> Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> Co-authored-by: gewenbin0992 <gewenbin292@163.com> Co-authored-by: gewenbin0992 <67409248+gewenbin0992@users.noreply.github.com> |
||
![]() |
abe57b6f17
|
Add SuperGlue model (#29886)
* Initial commit with template code generated by transformers-cli
* Multiple additions to SuperGlue implementation :
- Added the SuperGlueConfig
- Added the SuperGlueModel and its implementation
- Added basic weight conversion script
- Added new ImageMatchingOutput dataclass
* Few changes for SuperGlue
* Multiple changes :
- Added keypoint detection config to SuperGlueConfig
- Completed convert_superglue_to_pytorch and succesfully run inference
* Reverted unintentional change
* Multiple changes :
- Added SuperGlue to a bunch of places
- Divided SuperGlue into SuperGlueForImageMatching and SuperGlueModel
- Added testing images
* Moved things in init files
* Added docs (to be finished depending on the final implementation)
* Added necessary imports and some doc
* Removed unnecessary import
* Fixed make fix-copies bug and ran it
* Deleted SuperGlueModel
Fixed convert script
* Added SuperGlueImageProcessor
* Changed SuperGlue to support batching pairs of images and modified ImageMatchingOutput in consequences
* Changed convert_superglue_to_hf.py script to experiment different ways of reading an image and seeing its impact on performances
* Added initial tests for SuperGlueImageProcessor
* Added AutoModelForImageMatching in missing places and tests
* Fixed keypoint_detector_output instructions
* Fix style
* Adapted to latest main changes
* Added integration test
* Fixed bugs to pass tests
* Added keypoints returned by keypoint detector in the output of SuperGlue
* Added doc to SuperGlue
* SuperGlue returning all attention and hidden states for a fixed number of keypoints
* Make style
* Changed SuperGlueImageProcessor tests
* Revert "SuperGlue returning all attention and hidden states for a fixed number of keypoints"
Changed tests accordingly
This reverts commit 5b3b669c
* Added back hidden_states and attentions masked outputs with tests
* Renamed ImageMatching occurences into KeypointMatching
* Changed SuperGlueImageProcessor to raise error when batch_size is not even
* Added docs and clarity to hidden state and attention grouping function
* Fixed some code and done refactoring
* Fixed typo in SuperPoint output doc
* Fixed some of the formatting and variable naming problems
* Removed useless function call
* Removed AutoModelForKeypointMatching
* Fixed SuperGlueImageProcessor to only accept paris of images
* Added more fixes to SuperGlueImageProcessor
* Simplified the batching of attention and hidden states
* Simplified stack functions
* Moved attention instructions into class
* Removed unused do_batch_norm argument
* Moved weight initialization to the proper place
* Replaced deepcopy for instantiation
* Fixed small bug
* Changed from stevenbucaille to magic-leap repo
* Renamed London Bridge images to Tower Bridge
* Fixed formatting
* Renamed remaining "london" to "tower"
* Apply suggestions from code review
Small changes in the docs
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Added AutoModelForKeypointMatching
* Changed images used in example
* Several changes to image_processing_superglue and style
* Fixed resample type hint
* Changed SuperGlueImageProcessor and added test case for list of 2 images
* Changed list_of_tuples implementation
* Fix in dummy objects
* Added normalize_keypoint, log_sinkhorn_iterations and log_optimal_transport docstring
* Added missing docstring
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Moved forward block at bottom
* Added docstring to forward method
* Added docstring to match_image_pair method
* Changed test_model_common_attributes to test_model_get_set_embeddings test method signature
* Removed AutoModelForKeypointMatching
* Removed image fixtures and added load_dataset
* Added padding of images in SuperGlueImageProcessor
* Cleaned up convert_superglue_to_hf script
* Added missing docs and fixed unused argument
* Fixed SuperGlueImageProcessor tests
* Transposed all hidden states from SuperGlue to reflect the standard (..., seq_len, feature_dim) shape
* Added SuperGlueForKeypointMatching back to modeling_auto
* Fixed image processor padding test
* Changed SuperGlue docs
* changes:
- Abstraction to batch, concat and stack of inconsistent tensors
- Changed conv1d's to linears to match standard attention implementations
- Renamed all tensors to be tensor0 and not tensor_0 and be consistent
- Changed match image pair to run keypoint detection on all image first, create batching tensors and then filling these tensors matches after matches
- Various changes in docs, etc
* Changes to SuperGlueImageProcessor:
- Reworked the input image pairs checking function and added tests accordingly
- Added Copied from statements
- Added do_grayscale tag (also for SuperPointImageProcessor)
- Misc changes for better code
* Formatting changes
* Reverted conv1d to linear conversion because of numerical differences
* fix: changed some code to be more straightforward (e.g. filtering keypoints) and converted plot from opencv to matplotlib
* fix: removed unnecessary test
* chore: removed commented code and added back hidden states transpositions
* chore: changed from "inconsistent" to "ragged" function names as suggested
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* docs: applied suggestions
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* docs: updated to display matched output
* chore: applied suggestion for check_image_pairs_input function
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* chore: changed check_image_pairs_input function name to validate_and_format_image_pairs and used validate_preprocess_arguments function
* tests: simplified tests for image input format and shapes
* feat: converted SuperGlue's use of Conv1d with kernel_size of 1 with Linear layers. Changed tests and conversion script accordingly
* feat: several changes to address comments
Conversion script:
- Reverted fuse batchnorm to linear conversion
- Changed all 'nn.Module' to respective SuperGlue models
- Changed conversion script to use regex mapping and match other recent scripts
Modeling SuperGlue:
- Added batching with mask and padding to attention
- Removed unnecessary concat, stack and batch ragged pairs functions
- Reverted batchnorm layer
- Renamed query, key, value and merge layers into q, k, v, out proj
- Removed Union of different Module into nn.Module in _init_weights method typehint
- Changed several method's signature to combine image0 and image1 inputs with appropriate doc changes
- Updated SuperGlue's doc with torch.no_grad()
Updated test to reflect changes in SuperGlue model
* refactor: changed validate_and_format_image_pairs function with clarity
* refactor: changed from one SuperGlueMLP class to a list of SuperGlueMLP class
* fix: fixed forgotten init weight change from last commit
* fix: fixed rebase mistake
* fix: removed leftover commented code
* fix: added typehint and changed some of arguments default values
* fix: fixed attribute default values for SuperGlueConfig
* feat: added SuperGlueImageProcessor post process keypoint matching method with tests
* fix: fixed SuperGlue attention and hidden state tuples aggregation
* chore: fixed mask optionality and reordered tensor reshapes to be cleaner
* chore: fixed docs and error message returned in validate_and_format_image_pairs function
* fix: fixed returned keypoints to be the ones that SuperPoint returns
* fix: fixed check on number of image sizes for post process compared to the pairs in outputs of SuperGlue
* fix: fixed check on number of image sizes for post process compared to the pairs in outputs of SuperGlue (bis)
* fix: Changed SuperGlueMultiLayerPerceptron instantiation to avoid if statement
* fix: Changed convert_superglue_to_hf script to reflect latest SuperGlue changes and got rid of nn.Modules
* WIP: implement Attention from an existing class (like BERT)
* docs: Changed docs to include more appealing matching plot
* WIP: Implement Attention
* chore: minor typehint change
* chore: changed convert superglue script by removing all classes and apply conv to linear conversion in state dict + rearrange keys to comply with changes in model's layers organisation
* Revert "Fixed typo in SuperPoint output doc"
This reverts commit
|
||
![]() |
872dfbdd46
|
[ViTPose] Convert more checkpoints (#35638)
* Convert more checkpoints * Update docs, convert huge variant * Update model name * Update src/transformers/models/vitpose/modeling_vitpose.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Remove print statements * Update docs/source/en/model_doc/vitpose.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Link to collection --------- Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> |
||
![]() |
c23a1c1932
|
Add-helium (#35669)
* Add the helium model. * Add a missing helium. * And add another missing helium. * Use float for the rmsnorm mul. * Add the Helium tokenizer converter. * Add the pad token as suggested by Arthur. * Update the RMSNorm + some other tweaks. * Fix more rebase issues. * fix copies and style * fixes and add helium.md * add missing tests * udpate the backlink * oups * style * update init, and expected results * small fixes * match test outputs * style fixup, fix doc builder * add dummies and we should be good to go!z * update sdpa and fa2 documentation --------- Co-authored-by: laurent <laurent.mazare@gmail.com> |
||
![]() |
52e1f87c7d
|
[WIP] Emu3: add model (#33770)
* model can convert to HF and be loaded back * nit * works in single batch generation but hallucinates * use the image tokens * add image generation * now it works * add tests * update * add modulare but it doesn't work for porting docstring :( * skip some tests * add slow tests * modular removed the import? * guess this works * update * update * fix copies * fix test * fix copies * update * docs * fix tests * last fix tests? * pls * repo consistency * more style * style * remove file * address comments * tiny bits * update after the new modular * fix tests * add one more cond in check attributes * decompose down/up/mid blocks * allow static cache generation in VLMs * nit * fix copies * Update docs/source/en/model_doc/emu3.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/emu3.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/emu3.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/emu3.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/emu3.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/emu3.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/emu3.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/emu3.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * fix VAE upsampling * Update src/transformers/models/emu3/modular_emu3.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * address comments * state overwritten stuff explicitly * fix copies * add the flag for flex attn --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> |
||
![]() |
5f087d1335
|
Add Moonshine (#34784)
* config draft * full encoder forward * full decoder forward * fix sdpa and FA2 * fix sdpa and FA2 * moonshine model * moonshine model forward * fix attention with past_key_values * add MoonshineForConditionalGeneration * fix cache handling and causality for cross attention * no causal attention mask for the encoder * model addition (imports etc) * small nit * nits * Update src/transformers/models/moonshine/convert_usefulsensors_to_hf.py Co-authored-by: Joshua Lochner <admin@xenova.com> * add rope_theta * nits * model doc * Update src/transformers/models/auto/configuration_auto.py Co-authored-by: Joshua Lochner <admin@xenova.com> * imports * add MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES * updates modular * make * make fix-copies * ruff check examples fix * fix check_modular_conversion * nit * nits * nits * copied from -> imports * imports fix * integrate attention refacto * modular edge case * remove encoder * convolutions params in config * run modular_model_converter * make * Update docs/source/en/model_doc/moonshine.md Co-authored-by: Joshua Lochner <admin@xenova.com> * MoonshineModelTest * correct typo * make style * integration tests * make * modular convert * name conversion update (up_proj -> fc1 etc) * update config * update MLP * update attention * update encoder layer * update decoder layer * update convolutions parameters * update encoder * remove INPUTS_DOCSTRING * update decoder * update conditional generation * update pretrained model * imports * modular converted * update doc * fix * typo * update doc * update license * update init * split config in file * two classes for MLP * attention from GLM * from GlmRotaryEmbedding * split MLP * apply arthur's review suggestions * apply arthur's review suggestions * apply arthur's review suggestions * auto feature extractor * convert modular * fix + make * convert modular * make * unsplit config * use correct checkpoint * wrap generate * update tests * typos * make * typo * update doc --------- Co-authored-by: Joshua Lochner <admin@xenova.com> |
||
![]() |
8490d3159c
|
Add ViTPose (#30530)
* First draft * Make fixup * Make forward pass worké * Improve code * More improvements * More improvements * Make predictions match * More improvements * Improve image processor * Fix model tests * Add classic decoder * Convert classic decoder * Verify image processor * Fix classic decoder logits * Clean up * Add post_process_pose_estimation * Improve post_process_pose_estimation * Use AutoBackbone * Add support for MoE models * Fix tests, improve num_experts% * Improve variable names * Make fixup * More improvements * Improve post_process_pose_estimation * Compute centers and scales * Improve postprocessing * More improvements * Fix ViTPoseBackbone tests * Add docstrings, fix image processor tests * Update index * Use is_cv2_available * Add model to toctree * Add cv2 to doc tests * Remove script * Improve conversion script * Add coco_to_pascal_voc * Add box_to_center_and_scale to image_transforms * Update tests * Add integration test * Fix merge * Address comments * Replace numpy by pytorch, improve docstrings * Remove get_input_embeddings * Address comments * Move coco_to_pascal_voc * Address comment * Fix style * Address comments * Fix test * Address comment * Remove udp * Remove comment * [WIP] need to check if the numpy function is same as cv * add scipy affine_transform * Update src/transformers/models/vitpose/image_processing_vitpose.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * refactor convert * add output_shape * add atol 5e-2 * Use hf_hub_download in conversion script * make box_to_center more applicable * skipt test_get_set_embedding * fix to accept array and fix CI * add co-contributor * make it to tensor type output * add torch * change to torch tensor * add more test * minor change * CI test change * import torch should be above ImageProcessor * make style * try not use torch in def * Update src/transformers/models/vitpose/image_processing_vitpose.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * Update src/transformers/models/vitpose_backbone/configuration_vitpose_backbone.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * Update src/transformers/models/vitpose/modeling_vitpose.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * fix * fix * add caution * make more detail about dataset_index * Update src/transformers/models/vitpose/modeling_vitpose.py Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com> * Update src/transformers/models/vitpose/image_processing_vitpose.py Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com> * add docs * Update docs/source/en/model_doc/vitpose.md * Update src/transformers/models/vitpose/configuration_vitpose.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * Update src/transformers/__init__.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * Revert "Update src/transformers/__init__.py" This reverts commit |
||
![]() |
7176e06b52
|
Add TextNet (#34979)
* WIP * Add config and modeling for Fast model * Refactor modeling and add tests * More changes * WIP * Add tests * Add conversion script * Add conversion scripts, integration tests, image processor * Fix style and copies * Add fast model to init * Add fast model in docs and other places * Fix import of cv2 * Rename image processing method * Fix build * Fix Build * fix style and fix copies * Fix build * Fix build * Fix Build * Clean up docstrings * Fix Build * Fix Build * Fix Build * Fix build * Add test for image_processing_fast and add documentation tests * some refactorings * Fix failing tests * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Introduce TextNet * Fix failures * Refactor textnet model * Fix failures * Add cv2 to setup * Fix failures * Fix failures * Add CV2 dependency * Fix bugs * Fix build issue * Fix failures * Remove textnet from modeling fast * Fix build and other things * Fix build * some cleanups * some cleanups * Some more cleanups * Fix build * Incorporate PR feedbacks * More cleanup * More cleanup * More cleanup * Fix build * Remove all the references of fast model * More cleanup * Fix build * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Fix Build * Fix build * Fix build * Fix build * Fix build * Fix build * Incorporate PR feedbacks * Fix style * Fix build * Incorporate PR feedbacks * Fix image processing mean and std * Incorporate PR feedbacks * fix build failure * Add assertion to image processor * Incorporate PR feedbacks * Incorporate PR feedbacks * fix style failures * fix build * Fix Imageclassification's linear layer, also introduce TextNetImageProcessor * Fix build * Fix build * Fix build * Fix build * Incorporate PR feedbacks * Incorporate PR feedbacks * Fix build * Incorporate PR feedbacks * Remove some script * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Incorporate PR feedbacks * Fix image processing in textnet * Incorporate PR Feedbacks * Fix CI failures * Fix failing test * Fix failing test * Fix failing test * Fix failing test * Fix failing test * Fix failing test * Add textnet to readme * Improve readability * Incorporate PR feedbacks * fix code style * fix key error and convert working * tvlt shouldn't be here * fix test modeling test * Fix tests, make fixup * Make fixup * Make fixup * Remove TEXTNET_PRETRAINED_MODEL_ARCHIVE_LIST * improve type annotation Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Update tests/models/textnet/test_image_processing_textnet.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * improve type annotation Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * space typo Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * improve type annotation Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Update src/transformers/models/textnet/configuration_textnet.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * make conv layer kernel sizes and strides default to None * Update src/transformers/models/textnet/modeling_textnet.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Update src/transformers/models/textnet/modeling_textnet.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * fix keyword bug * add batch init and make fixup * Make fixup * Update integration test * Add figure * Update textnet.md * add testing and fix errors (classification, imgprocess) * fix error check * make fixup * make fixup * revert to original docstring * add make style * remove conflict for now * Update modeling_auto.py got a confusion in `timm_wrapper` - was giving some conflicts * Update tests/models/textnet/test_modeling_textnet.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Update src/transformers/models/textnet/modeling_textnet.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Update tests/models/textnet/test_modeling_textnet.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Update src/transformers/models/textnet/modeling_textnet.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * add changes * Update textnet.md * add doc * add authors hf ckpt + rename * add feedback: classifier/docs --------- Co-authored-by: raghavanone <opensourcemaniacfreak@gmail.com> Co-authored-by: jadechoghari <jadechoghari@users.noreply.huggingface.co> Co-authored-by: Niels <niels.rogge1@gmail.com> Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> |
||
![]() |
96bf3d6cc5
|
Add diffllama (#34083)
* first adding diffllama * add Diff Attention and other but still with errors * complate make attention Diff-Attention * fix some bugs which may be caused by transformer-cli while adding model * fix a bug caused by forgetting KV cache... * Update src/transformers/models/diffllama/modeling_diffllama.py You don't need to divide by 2 if we use same number of attention heads as llama. instead you can just split in forward. Co-authored-by: Minho Ryu <ryumin93@gmail.com> * Update src/transformers/models/diffllama/modeling_diffllama.py fit to changeing "num_heads // 2" place Co-authored-by: Minho Ryu <ryumin93@gmail.com> * Update src/transformers/models/diffllama/modeling_diffllama.py new codes are more meaningful than before Co-authored-by: Minho Ryu <ryumin93@gmail.com> * Update src/transformers/models/diffllama/modeling_diffllama.py new codes are more meaningful than before Co-authored-by: Minho Ryu <ryumin93@gmail.com> * Update src/transformers/models/diffllama/modeling_diffllama.py fit to changeing "num_heads // 2" place Co-authored-by: Minho Ryu <ryumin93@gmail.com> * Update src/transformers/models/diffllama/modeling_diffllama.py fix 2times divide by sqrt(self.head_dim) Co-authored-by: Minho Ryu <ryumin93@gmail.com> * Update src/transformers/models/diffllama/modeling_diffllama.py fix 2times divide by sqrt(self.head_dim) Co-authored-by: Minho Ryu <ryumin93@gmail.com> * Update src/transformers/models/diffllama/modeling_diffllama.py fit to changeing "num_heads // 2" place. and more visible Co-authored-by: Minho Ryu <ryumin93@gmail.com> * I found Attention missed implemented from paper still on |
||
![]() |
6e0515e99c
|
Add DINOv2 with registers (#35348)
* added changes from 32905 * fixed mistakes caused by select all paste * rename diff_dinov2... * ran tests * Fix modular * Fix tests * Use new init * Simplify drop path * Convert all checkpoints * Add figure and summary * Update paths * Update docs * Update docs * Update toctree * Update docs --------- Co-authored-by: BernardZach <bernardzach00@gmail.com> Co-authored-by: Zach Bernard <132859071+BernardZach@users.noreply.github.com> |
||
![]() |
667ed5635e
|
Add ModernBERT to Transformers (#35158)
* initial cut of modernbert for transformers
* small bug fixes
* fixes
* Update import
* Use compiled mlp->mlp_norm to match research implementation
* Propagate changes in modular to modeling
* Replace duplicate attn_out_dropout in favor of attention_dropout
cc @warner-benjamin let me know if the two should remain separate!
* Update BOS to CLS and EOS to SEP
Please confirm @warner-benjamin
* Set default classifier bias to False, matching research repo
* Update tie_word_embeddings description
* Fix _init_weights for ForMaskedLM
* Match base_model_prefix
* Add compiled_head to match research repo outputs
* Fix imports for ModernBertForMaskedLM
* Just use "gelu" default outright for classifier
* Fix config name typo: initalizer -> initializer
* Remove some unused parameters in docstring. Still lots to edit there!
* Compile the embeddings forward
Not having this resulted in very slight differences - so small it wasn't even noticed for the base model, only for the large model.
But the tiny difference for large propagated at the embedding layer through the rest of the model, leading to notable differences of ~0.0084 average per value, up to 0.2343 for the worst case.
* Add drafts for ForSequenceClassification/ForTokenClassification
* Add initial SDPA support (not exactly equivalent to FA2 yet!)
During testing, FA2 and SDPA still differ by about 0.0098 per value in the token embeddings. It still predicts the correct mask fills, but I'd like to get it fully 1-1 if possible.
* Only use attention dropout if training
* Add initial eager attention support (also not equivalent to FA2 yet!)
Frustratingly, I also can't get eager to be equivalent to FA2 (or sdpa), but it does get really close, i.e. avg ~0.010 difference per value.
Especially if I use fp32 for both FA2&eager, avg ~0.0029 difference per value
The fill-mask results are good with eager.
* Add initial tests, output_attentions, output_hidden_states, prune_heads
Tests are based on BERT, not all tests pass yet: 23 failed, 79 passed, 100 skipped
* Remove kwargs from ModernBertForMaskedLM
Disable sparse_prediction by default to match the normal HF, can be enabled via config
* Remove/adjust/skip improper tests; warn if padding but no attn mask
* Run formatting etc.
* Run python utils/custom_init_isort.py
* FlexAttention with unpadded sequences(matches FA2 within bf16 numerics)
* Reformat init_weights based on review
* self -> module in attention forwards
* Remove if config.tie_word_embeddings
* Reformat output projection on a different line
* Remove pruning
* Remove assert
* Call contiguous() to simplify paths
* Remove prune_qkv_linear_layer
* Format code
* Keep as kwargs, only use if needed
* Remove unused codepaths & related config options
* Remove 3d attn_mask test; fix token classification tuple output
* Reorder: attention_mask above position_ids, fixes gradient checkpointing
* Fix usage if no FA2 or torch v2.5+
* Make torch.compile/triton optional
Should we rename 'compile'? It's a bit vague
* Separate pooling options into separate functions (cls, mean) - cls as default
* Simplify _pad_modernbert_output, remove unused labels path
* Update tied weights to remove decoder.weight, simplify decoder loading
* Adaptively set config.compile based on hf_device_map/device/resize, etc.
* Update ModernBertConfig docstring
* Satisfy some consistency checks, add unfinished docs
* Only set compile to False if there's more than 1 device
* Add docstrings for public ModernBert classes
* Dont replace docstring returns - ends up being duplicate
* Fix mistake in toctree
* Reformat toctree
* Patched FlexAttention, SDPA, Eager with Local Attention
* Implement FA2 -> SDPA -> Eager attn_impl defaulting, crucial
both to match the original performance, and to get the highest inference speed without requiring users to manually pick FA2
* Patch test edge case with Idefics3 not working with 'attn_implementation="sdpa"'
* Repad all_hidden_states as well
* rename config.compile to reference_compile
* disable flex_attention since it crashes
* Update modernbert.md
* Using dtype min to mask in eager
* Fully remove flex attention for now
It's only compatible with the nightly torch 2.6, so we'll leave it be for now. It's also slower than eager/sdpa.
Also, update compile -> reference_compile in one more case
* Call contiguous to allow for .view()
* Copyright 2020 -> 2024
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update/simplify __init__ structure
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Remove "... if dropout_prob > 0 else identity"
As dropout with 0.0 should be efficient like identity
* re-use existing pad/unpad functions instead of creating new ones
* remove flexattention method
* Compute attention_mask and local_attention_mask once in modeling
* Simplify sequence classification prediction heads, only CLS now
Users can make custom heads if they feel like it
Also removes the unnecessary pool parameter
* Simplify module.training in eager attn
* Also export ModernBertPreTrainedModel
* Update the documentation with links to finetuning scripts
* Explain local_attention_mask parameter in docstring
* Simplify _autoset_attn_implementation, rely on super()
* Keep "in" to initialize Prediction head
Doublechecked with Benjamin that it's correct/what we used for pretraining
* add back mean pooling
* Use the pooling head in TokenClassification
* update copyright
* Reset config._attn_implementation_internal on failure
* Allow optional attention_mask in ForMaskedLM head
* fix failing run_slow tests
* Add links to the paper
* Remove unpad_no_grad, always pad/unpad without gradients
* local_attention_mask -> sliding_window_mask
* Revert "Use the pooling head in TokenClassification"
This reverts commit
|
||
![]() |
9613933b02
|
Add the Bamba Model (#34982)
* initial commit for PR Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com> * rename dynamic cache Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * add more unit tests Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * add integration test Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * add integration test Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * Add modular bamba file * Remove trainer changes from unrelated PR * Modify modular and cofig to get model running * Fix some CI errors and beam search * Fix a plethora of bugs from CI/docs/etc * Add bamba to models with special caches * Updat to newer mamba PR for mamba sublayer * fix test_left_padding_compatibility Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * fix style Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * fix remaining tests Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * missed this test Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * ran make style Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * move slow tag to integration obj Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * make style Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * address comments Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * fix modular Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * left out one part of modular Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * change model Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * Make Rotary modular as well * Update bamba.md Added overview, update Model inference card and added config * Update bamba.md * Update bamba.md * Update bamba.md Minor fixes * Add docs for config and model back Signed-off-by: Antoni Viros i Martin <aviros@ibm.com> * Add warning when using fast kernels * replaced generate example Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> * Address comments from PR Signed-off-by: Antoni Viros i Martin <aviros@ibm.com> * Propagate attention fixes Signed-off-by: Antoni Viros i Martin <aviros@ibm.com> * Fix attention interfaces to the new API Signed-off-by: Antoni Viros i Martin <aviros@ibm.com> * Fix API for decoder layer Signed-off-by: Antoni Viros i Martin <aviros@ibm.com> * Remove extra weights Signed-off-by: Antoni Viros i Martin <aviros@ibm.com> --------- Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com> Signed-off-by: Antoni Viros i Martin <aviros@ibm.com> Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com> Co-authored-by: Antoni Viros i Martin <aviros@ibm.com> Co-authored-by: divya-kumari32 <72085811+divya-kumari32@users.noreply.github.com> Co-authored-by: Antoni Viros <ani300@gmail.com> |
||
![]() |
6c08b3b6e5
|
Add Falcon3 documentation (#35307)
* Add Falcon3 documentation * Update Falcon3 documentation * Change Falcon to Falcon3 * Update docs and run make fix-copies * Add blog post and huggingface models links |
||
![]() |
f33a0cebb3
|
Add ColPali to 🤗 transformers (#33736)
* feat: run `add-new-model-like` * feat: add paligemma code with "copied from" * feat: add ColPaliProcessor * feat: add ColPaliModel * feat: add ColPaliConfig * feat: rename `ColPaliForConditionalGeneration` to `ColPaliModel` * fixup modeling colpali * fix: fix root import shortcuts * fix: fix `modeling_auto` dict * feat: comment out ColPali test file * fix: fix typos from `add-new-model-like` * feat: explicit the forward input args * feat: move everything to `modular_colpali.py` * fix: put back ColPaliProcesor * feat: add auto-generated files * fix: run `fix-copies` * fix: remove DOCStRING constants to make modular converter work * fix: fix typo + modular converter * fix: add missing imports * feat: no more errors when loading ColPaliModel * fix: remove unused args in forward + tweak doc * feat: rename `ColPaliModel` to `ColPaliForRetrieval` * fix: apply `fix-copies` * feat: add ColPaliProcessor to `modular_colpali` * fix: run make quality + make style * fix: remove duplicate line in configuration_auto * feat: make ColPaliModel inehrit from PaliGemmaForConditionalGeneration * fix: tweak and use ColPaliConfig * feat: rename `score` to `post_process_retrieval` * build: run modular formatter + make style * feat: convert colpali weights + fixes * feat: remove old weight converter file * feat: add and validate tests * feat: replace harcoded path to "vidore/colpali-v1.2-hf" in tests * fix: add bfloat16 conversion in weight converter * feat: replace pytest with unittest in modeling colpali test * feat: add sanity check for weight conversion (doesn't work yet) * feat: add shape sanity check in weigth converter * feat: make ColPaliProcessor args explicit * doc: add doc for ColPali * fix: trying to fix output mismatch * feat: tweaks * fix: ColPaliModelOutput inherits from ModelOutput instead of PaliGemmaCausalLMOutputWithPast * fix: address comments on PR * fix: adapt tests to the Hf norm * wip: try things * feat: add `__call__` method to `ColPaliProcessor` * feat: remove need for dummy image in `process_queries` * build: run new modular converter * fix: fix incorrect method override * Fix tests, processing, modular, convert * fix tokenization auto * hotfix: manually fix processor -> fixme once convert modular is fixed * fix: convert weights working * feat: rename and improve convert weight script * feat: tweaks * fest: remove `device` input for `post_process_retrieval` * refactor: remove unused `get_torch_device` * Fix all tests * docs: update ColPali model doc * wip: fix convert weights to hf * fix logging modular * docs: add acknowledgements in model doc * docs: add missing docstring to ColPaliProcessor * docs: tweak * docs: add doc for `ColPaliForRetrievalOutput.forward` * feat: add modifications from colpali-engine v0.3.2 in ColPaliProcessor * fix: fix and upload colapli hf weights * refactor: rename `post_process_retrieval` to `score_retrieval` * fix: fix wrong typing for `score_retrieval` * test: add integration test for ColPali * chore: rerun convert modular * build: fix root imports * Update docs/source/en/index.md Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com> * fix: address PR comments * wip: reduce the prediction gap in weight conversion * docs: add comment in weight conversion script * docs: add example for `ColPaliForRetrieval.forward` * tests: change dataset path to the new one in hf-internal * fix: colpali weight conversion works * test: add fine-grained check for ColPali integration test * fix: fix typos in convert weight script * docs: move input docstring in a variable * fix: remove hardcoded torch device in test * fix: run the new modular refactor * docs: fix python example for ColPali * feat: add option to choose `score_retrieval`'s output dtype and device * docs: update doc for `score_retrieval` * feat: add `patch_size` property in ColPali model * chore: run `make fix-copies` * docs: update description for ColPali cookbooks * fix: remove `ignore_index` methods * feat: remove non-transformers specific methods * feat: update `__init__.py` to new hf format * fix: fix root imports in transformers * feat: remove ColPali's inheritance from PaliGemma * Fix CI issues * nit remove prints * feat: remove ColPali config and model from `modular_colpali.py` * feat: add `ColPaliPreTrainedModel` and update modeling and configuration code * fix: fix auto-removed imports in root `__init__.py` * fix: various fixes * fix: fix `_init_weight` * temp: comment `AutoModel.from_config` for experiments * fix: add missing `output_attentions` arg in ColPali's forward * fix: fix `resize_token_embeddings` * fix: make `input_ids` optional in forward * feat: rename `projection_layer` to `embedding_proj_layer` * wip: fix convert colpali weight script * fix tests and convert weights from original repo * fix unprotected import * fix unprotected torch import * fix style * change vlm_backbone_config to vlm_config * fix unprotected import in modular this time * fix: load config from Hub + tweaks in convert weight script * docs: move example usage from model docstring to model markdown * docs: fix input docstring for ColPali's forward method * fix: use `sub_configs` for ColPaliConfig * fix: remove non-needed sanity checks in weight conversion script + tweaks * fix: fix issue with `replace_return_docstrings` in ColPali's `forward` * docs: update docstring for `ColPaliConfig` * test: change model path in ColPali test * fix: fix ColPaliConfig * fix: fix weight conversion script * test: fix expected weights for ColPali model * docs: update ColPali markdown * docs: fix minor typo in ColPaliProcessor * Fix tests and add _no_split_modules * add text_config to colpali config * [run slow] colpali * move inputs to torch_device in integration test * skip test_model_parallelism * docs: clarify quickstart snippet in ColPali's model card * docs: update ColPali's model card --------- Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co> Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com> |
||
![]() |
64478c7631
|
Add Cohere2 model (#35224) | ||
![]() |
5fcf6286bf
|
Add TimmWrapper (#34564)
* Add files * Init * Add TimmWrapperModel * Fix up * Some fixes * Fix up * Remove old file * Sort out import orders * Fix some model loading * Compatible with pipeline and trainer * Fix up * Delete test_timm_model_1/config.json * Remove accidentally commited files * Delete src/transformers/models/modeling_timm_wrapper.py * Remove empty imports; fix transformations applied * Tidy up * Add image classifcation model to special cases * Create pretrained model; enable device_map='auto' * Enable most tests; fix init order * Sort imports * [run-slow] timm_wrapper * Pass num_classes into timm.create_model * Remove train transforms from image processor * Update timm creation with pretrained=False * Fix gamma/beta issue for timm models * Fixing gamma and beta renaming for timm models * Simplify config and model creation * Remove attn_implementation diff * Fixup * Docstrings * Fix warning msg text according to test case * Fix device_map auto * Set dtype and device for pixel_values in forward * Enable output hidden states * Enable tests for hidden_states and model parallel * Remove default scriptable arg * Refactor inner model * Update timm version * Fix _find_mismatched_keys function * Change inheritance for Classification model (fix weights loading with device_map) * Minor bugfix * Disable save pretrained for image processor * Rename hook method for loaded keys correction * Rename state dict keys on save, remove `timm_model` prefix, make checkpoint compatible with `timm` * Managing num_labels <-> num_classes attributes * Enable loading checkpoints in Trainer to resume training * Update error message for output_hidden_states * Add output hidden states test * Decouple base and classification models * Add more test cases * Add save-load-to-timm test * Fix test name * Fixup * Add do_pooling * Add test for do_pooling * Fix doc * Add tests for TimmWrapperModel * Add validation for `num_classes=0` in timm config + test for DINO checkpoint * Adjust atol for test * Fix docs * dev-ci * dev-ci * Add tests for image processor * Update docs * Update init to new format * Update docs in configuration * Fix some docs in image processor * Improve docs for modeling * fix for is_timm_checkpoint * Update code examples * Fix header * Fix typehint * Increase tolerance a bit * Fix Path * Fixing model parallel tests * Disable "parallel" tests * Add comment for metadata * Refactor AutoImageProcessor for timm wrapper loading * Remove custom test_model_outputs_equivalence * Add require_timm decorator * Fix comment * Make image processor work with older timm versions and tensor input * Save config instead of whole model in image processor tests * Add docstring for `image_processor_filename` * Sanitize kwargs for timm image processor * Fix doc style * Update check for tensor input * Update normalize * Remove _load_timm_model function --------- Co-authored-by: Amy Roberts <22614925+amyeroberts@users.noreply.github.com> |
||
![]() |
9ad4c93536
|
Add Aria (#34157)
* Add Aria --------- Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> |
||
![]() |
50189e36a6
|
Add I-JEPA (#33125)
* first draft * add IJepaEmbeddings class * fix copy-from for IJepa model * add weight conversion script * update attention class names in IJepa model * style changes * Add push_to_hub option to convert_ijepa_checkpoint function * add initial tests for I-JEPA * minor style changes to conversion script * make fixup related * rename conversion script * Add I-JEPA to sdpa docs * minor fixes * adjust conversion script * update conversion script * adjust sdpa docs * [run_slow] ijepa * [run-slow] ijepa * [run-slow] ijepa * [run-slow] ijepa * [run-slow] ijepa * [run-slow] ijepa * formatting issues * adjust modeling to modular code * add IJepaModel to objects to ignore in docstring checks * [run-slow] ijepa * fix formatting issues * add usage instruction snippet to docs * change pos encoding, add checkpoint for doc * add verify logits for all models * [run-slow] ijepa * update docs to include image feature extraction instructions * remove pooling layer from IJepaModel in image classification class * [run-slow] ijepa * remove pooling layer from IJepaModel constructor * update docs * [run-slow] ijepa * [run-slow] ijepa * small changes * [run-slow] ijepa * style adjustments * update copyright in init file * adjust modular ijepa * [run-slow] ijepa |
||
![]() |
9121ab8fe8
|
Rename OLMo November to OLMo2 (#34864)
* Rename/move OLMo Nov files to OLMo2 * Rename Olmo1124 and its variants to Olmo2 |
||
![]() |
3ee24e2208
|
Add OLMo November 2024 (#34551)
* Add model skeletion with transformers-cli add-new-model-like * Convert config to modular, add rms_norm_eps, delete clip_qkv * Convert model to modular, add RMSNorm * Add flash attention with qk norm and no qkv clipping * Add decoder layer with RMSNorm after attention/feedforward layers * Add base and causal model * Add converter improvements from OLMo repo * Update weight loading in OLMo to HF converter * Set correct default for rms_norm_eps * Set correct pipeline_model_mapping in test * Run make fixup * Fix model type * Re-run modular conversion * Manually set config docs to fix build errors * Convert olmo-1124 to olmo_1124 to fix flash attention docs errors * Start updating tests * Update tests * Copy upstream test_eager_matches_sdpa_inference_1_bfloat16 changes to olmo_1124 * Rename input_layernorm and post_attention_layernorm to reflect their ops better * Use correct tokenizer * Remove test unsupported by GPT2 tokenizer * Create GenerationConfig outside of from_pretrained call * Use simpler init file structure * Add explicit __all__ to support simplified init * Make safetensor serialization the default * Update OLMo November 2024 docs |
||
![]() |
30c76d5b28
|
add code generation to natural language processing section (#34333) | ||
![]() |
6604764007
|
add Glm (#33823)
* Create modular_glm.py * Update modular_glm.py * Finalize architecture without all attentions * Add all attentions modules * Finalize modular * Update given last version * Last update * Finalize model * Finalize converter * Update convert_glm_weights_to_hf.py * style * style * Create __init__.py * Aff all inits * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Correct the rotary embeddings * Remove apply_residual_connection_post_layernorm (always false) * remove use_rms_norm (always true) * remove past_layer_norm (always true) * Update __init__.py * Update config and license * start adding tests and doc * Add doc + style * Update test_modeling_glm.py * Add dummies * Apply correct modeling * Refactor attention to follow llama * Update __init__.py * Update convert_glm_weights_to_hf.py * Correct bias * remove linear_bias and pdrop (never used) * apply modular * Simplify converter * remove dummies + style * add model_input_names * Add pretraining_tp to config for when eager attention is used * Update modular to remove all pretraining_tp * Update test_modeling_glm.py * Update the __all__ * Update __all__ * Update __init__.py * Update test_modeling_glm.py * add revisions * Add the correct repos and revisions * style * Update __init__.py * update exports * remove import of modular files * style * Apply Llama changes + refine converter * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * style * Use new modular converter * add pretrainedmodel to init * style * Update test_modeling_glm.py * Move config outside modular to please CI about docstrings * Add dummies to please CI * Update glm.md * Update glm.md |
||
![]() |
9ba021ea75
|
Moshi integration (#33624)
* clean mimi commit * some nits suggestions from Arthur * make fixup * first moshi WIP * converting weights working + configuration + generation configuration * finalize converting script - still missing tokenizer and FE and processor * fix saving model w/o default config * working generation * use GenerationMixin instead of inheriting * add delay pattern mask * fix right order: moshi codes then user codes * unconditional inputs + generation config * get rid of MoshiGenerationConfig * blank user inputs * update convert script:fix conversion, add tokenizer, feature extractor and bf16 * add and correct Auto classes * update modeling code, configuration and tests * make fixup * fix some copies * WIP: add integration tests * add dummy objects * propose better readiblity and code organisation * update tokenization tests * update docstrigns, eval and modeling * add .md * make fixup * add MoshiForConditionalGeneration to ignore Auto * revert mimi changes * re * further fix * Update moshi.md * correct md formating * move prepare causal mask to class * fix copies * fix depth decoder causal * fix and correct some tests * make style and update .md * correct config checkpoitn * Update tests/models/moshi/test_tokenization_moshi.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update tests/models/moshi/test_tokenization_moshi.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * make style * Update src/transformers/models/moshi/__init__.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fixup * change firm in copyrights * udpate config with nested dict * replace einsum * make style * change split to True * add back splt=False * remove tests in convert * Update tests/models/moshi/test_modeling_moshi.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * add default config repo + add model to FA2 docstrings * remove logits float * fix some tokenization tests and ignore some others * make style tokenization tests * update modeling with sliding window + update modeling tests * [run-slow] moshi * remove prepare for generation frol CausalLM * isort * remove copied from * ignore offload tests * update causal mask and prepare 4D mask aligned with recent changes * further test refine + add back prepare_inputs_for_generation for depth decoder * correct conditional use of prepare mask * update slow integration tests * fix multi-device forward * remove previous solution to device_map * save_load is flaky * fix generate multi-devices * fix device * move tensor to int --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Marc Sun <marc@huggingface.co> |
||
![]() |
f319ba16fa
|
Add Zamba (#30950)
* Update index.md * Rebase * Rebase * Updates from make fixup * Update zamba.md * Batched inference * Update * Fix tests * Fix tests * Fix tests * Fix tests * Update docs/source/en/model_doc/zamba.md Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update docs/source/en/model_doc/zamba.md Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update configuration_zamba.py * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update modeling_zamba.py * Update modeling_zamba.py * Update modeling_zamba.py * Update configuration_zamba.py * Update modeling_zamba.py * Update modeling_zamba.py * Merge branch 'main' of https://github.com/Zyphra/transformers_zamba * Update ZambaForCausalLM * Update ZambaForCausalLM * Describe diffs with original mamba layer * Moved mamba init into `_init_weights` * Update index.md * Rebase * Rebase * Updates from make fixup * Update zamba.md * Batched inference * Update * Fix tests * Fix tests * Fix tests * Fix tests * Update docs/source/en/model_doc/zamba.md Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update docs/source/en/model_doc/zamba.md Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update configuration_zamba.py * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update modeling_zamba.py * Update modeling_zamba.py * Update modeling_zamba.py * Update configuration_zamba.py * Update modeling_zamba.py * Update modeling_zamba.py * Merge branch 'main' of https://github.com/Zyphra/transformers_zamba * Update ZambaForCausalLM * Moved mamba init into `_init_weights` * Update ZambaForCausalLM * Describe diffs with original mamba layer * make fixup fixes * quality test fixes * Fix Zamba model path * circleci fixes * circleci fixes * circleci fixes * circleci fixes * circleci fixes * circleci fixes * circleci fixes * circleci fixes * circleci fixes * Update * circleci fixes * fix zamba test from merge * fix ValueError for disabling mamba kernels * add HF copyright Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * shared_transf --> shared_transformer * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Fixes * Move attention head dim to config * Fix circle/ci tests * Update modeling_zamba.py * apply GenerationMixin inheritance change from upstream * apply import ordering * update needed transformers version for zamba Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * add contribution author * add @slow to avoid CI * Update src/transformers/models/zamba/modeling_zamba.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Define attention_hidden_size * Added doc for attention_head_size * trigger CI * Fix doc of attention_hidden_size * [run-slow] zamba * Fixed shared layer logic, swapped up<->gate in mlp * shared_transformer -> shared_transf * reformat HybridLayer __init__ * fix docstrings in zamba config * added definition of _get_input_ids_and_config * fixed formatting of _get_input_ids_and_config --------- Co-authored-by: root <root@node-4.us-southcentral1-a.compute.internal> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: root <root@node-1.us-southcentral1-a.compute.internal> Co-authored-by: Quentin Anthony <qganthony@yahoo.com> |
||
![]() |
e3775539c8
|
PhiMoE (#33363)
* onboard phimoe model * removed debug code * added unit tests * updated docs * formatted * fixed unit tests * fixed test case * fixed format * refactored code * fixed expected outputs in the integration tests * Added a warning msg * Addressed comments * Addressed comments * fixed test cases * added paper link * Addressed comments * Refactored PhimoeForCausalLM forward fn * Refactored PhimoeRotaryEmbedding class * fixed test cases * fixed testcase * fixed test case * Addressed comments * fixed test cases * fixed testcases * Used cache position instead to get the seq len |
||
![]() |
f2c388e3f9
|
Add Idefics 3! (#32473)
* Add Idefics 3! * fixes to make both pipelines identical * fix for quantized models * First pass at the review * remove vocab size from the main config (it's still in the text_config) * hot fix for merve * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * re-add model_type for text_config * remove support for old_cache * remove hidden_size from main config * rename idefics3 HF repo * few changes suggested in the PR * fix to input_data_format computation * remove overwrite of _autoset_attn_implementation following @zucchini-nlp suggestion * improve example * few improvements from amy's review * big change to enable processing input images as numpy arrays * Changes to the code to uniformize processor kwargs * image processing tests * image processing tests fixes and some bugs they discovered * addressed review comments from Yoni * fix modeling tests * remove special tokens that are not special * fixes tests * skip failing tests - they also fail for idefics2 * added paper and readded the tests with multi gpu, who knows * Update docs/source/en/model_doc/idefics3.md Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * review amy until image_processing_idefics3 * last comments from Amy * review amy * Update src/transformers/models/idefics3/image_processing_idefics3.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/idefics3/modeling_idefics3.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update docs/source/en/model_doc/idefics3.md Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * doc improvement - amy review * fix runtime error during fine-tuning * amy's review * Update src/transformers/models/idefics3/image_processing_idefics3.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/idefics3/image_processing_idefics3.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/idefics3/modeling_idefics3.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * ruff * amy's comment on the order * ruff ruff * fix copies * square images when they are not splitted * ruff :( * Update src/transformers/models/idefics3/image_processing_idefics3.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update tests/models/idefics3/test_processing_idefics3.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * fix small bug introduced in refactor * amy's image processing changes * fixes peft tests and ruff * modify to_pil_image from transformers. and review from emanuele. * add modified to_pil_image --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> |
||
![]() |
19d58d31f1
|
Add MLLama (#33703)
* current changes
* nit
* Add cross_attenttion_mask to processor
* multi-image fixed
* Add cross_attenttion_mask to processor
* cross attn works in all cases
* WIP refactoring function for image processor
* WIP refactoring image processor functions
* Refactor preprocess to use global loops instead of list nested list comps
* Docstrings
* Add channels unification
* fix dtype issues
* Update docsrings and format
* Consistent max_image_tiles
* current script
* updates
* Add convert to rgb
* Add image processor tests
* updates!
* update
* god damn it I am dumb sometimes
* Precompute aspect ratios
* now this works, full match
* fix 😉
* nits
* style
* fix model and conversion
* nit
* nit
* kinda works
* hack for sdpa non-contiguous bias
* nits here and there
* latest c hanges
* merge?
* run forward
* Add aspect_ratio_mask
* vision attention mask
* update script and config variable names
* nit
* nits
* be able to load
* style
* nits
* there
* nits
* make forward run
* small update
* enable generation multi-turn
* nit
* nit
* Clean up a bit for errors and typos
* A bit more constant fixes
* 90B keys and shapes match
* Fix for 11B model
* Fixup, remove debug part
* Docs
* Make max_aspect_ratio_id to be minimal
* Update image processing code to match new implementation
* Adjust conversion for final checkpoint state
* Change dim in repeat_interleave (accordig to meta code)
* tmp fix for num_tiles
* Fix for conversion (gate<->up, q/k_proj rope permute)
* nits
* codestyle
* Vision encoder fixes
* pass cross attn mask further
* Refactor aspect ratio mask
* Disable text-only generation
* Fix cross attention layers order, remove q/k norm rotation for cross atention layers
* Refactor gated position embeddings
* fix bugs but needs test with new weights
* rope scaling should be llama3
* Fix rope scaling name
* Remove debug for linear layer
* fix copies
* Make mask prepare private func
* Remove linear patch embed
* Make precomputed embeddings as nn.Embedding module
* MllamaPrecomputedAspectRatioEmbedding with config init
* Remove unused self.output_dim
* nit, intermediate layers
* Rename ln and pos_embed
* vision_chunk_size -> image_size
* return_intermediate -> intermediate_layers_indices
* vision_input_dim -> hidden_size
* Fix copied from statements
* fix most tests
* Fix more copied from
* layer_id->layer_idx
* Comment
* Fix tests for processor
* Copied from for _prepare_4d_causal_attention_mask_with_cache_position
* Style fix
* Add MllamaForCausalLM
* WIP fixing tests
* Remove duplicated layers
* Remove dummy file
* Fix style
* Fix consistency
* Fix some TODOs
* fix language_model instantiation, add docstring
* Move docstring, remove todos for precomputed embeds (we cannot init them properly)
* Add initial docstrings
* Fix
* fix some tests
* lets skip these
* nits, remove print, style
* Add one more copied from
* Improve test message
* Make validate func private
* Fix dummy objects
* Refactor `data_format` a bit + add comment
* typos/nits
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* fix dummy objects and imports
* Add chat template config json
* remove num_kv_heads from vision attention
* fix
* move some commits and add more tests
* fix test
* Remove `update_key_name` from modeling utils
* remove num-kv-heads again
* some prelimiary docs
* Update chat template + tests
* nit, conversion script max_num_tiles from params
* Fix warning for text-only generation
* Update conversion script for instruct models
* Update chat template in converstion + test
* add tests for CausalLM model
* model_max_length, avoid null chat_template
* Refactor conversion script
* Fix forward
* Fix integration tests
* Refactor vision config + docs
* Fix default
* Refactor text config
* Doc fixes
* Remove unused args, fix docs example
* Squashed commit of the following:
commit b51ce5a2efffbecdefbf6fc92ee87372ec9d8830
Author: qubvel <qubvel@gmail.com>
Date: Wed Sep 18 13:39:15 2024 +0000
Move model + add output hidden states and output attentions
* Fix num_channels
* Add mllama text and mllama vision models
* Fixing repo consistency
* Style fix
* Fixing repo consistency
* Fixing unused config params
* Fix failed tests after refactoring
* hidden_activation -> hidden_act for text mlp
* Remove from_pretrained from sub-configs
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/mllama/convert_mllama_weights_to_hf.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Reuse lambda in conversion script
* Remove run.py
* Update docs/source/en/model_doc/mllama.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/mllama/processing_mllama.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Remove unused LlamaTokenizerFast
* Fix logging
* Refactor gating
* Remove cycle for collecting intermediate states
* Refactor text-only check, add integration test for text-only
* Revert from pretrained to configs
* Fix example
* Add auto `bos_token` adding in processor
* Fix tips
* Update src/transformers/models/auto/tokenization_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Enable supports_gradient_checkpointing model flag
* add eager/sdpa options
* don't skip attn tests and bring back GC skips (did i really remove those?)
* Fix signature, but get error with None gradient
* Fix output attention tests
* Disable GC back
* Change no split modules
* Fix dropout
* Style
* Add Mllama to sdpa list
* Add post init for vision model
* Refine config for MllamaForCausalLMModelTest and skipped tests for CausalLM model
* if skipped, say it, don't pass
* Clean vision tester config
* Doc for args
* Update tests/models/mllama/test_modeling_mllama.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add cross_attention_mask to test
* typehint
* Remove todo
* Enable gradient checkpointing
* Docstring
* Style
* Fixing and skipping some tests for new cache
* Mark flaky test
* Skip `test_sdpa_can_compile_dynamic` test
* Fixing some offload tests
* Add direct GenerationMixin inheritance
* Remove unused code
* Add initializer_range to vision config
* update the test to make sure we show if split
* fix gc?
* Fix repo consistency
* Undo modeling utils debug changes
* Fix link
* mllama -> Mllama
* [mllama] -> [Mllama]
* Enable compile test for CausalLM model (text-only)
* Fix TextModel prefix
* Update doc
* Docs for forward, type hints, and vision model prefix
* make sure to reset
* fix init
* small script refactor and styling
* nit
* updates!
* some nits
* Interpolate embeddings for 560 size and update integration tests
* nit
* does not suppor static cache!
* update
* fix
* nit2
* this?
* Fix conversion
* Style
* 4x memory improvement with image cache AFAIK
* Token decorator for tests
* Skip failing tests
* update processor errors
* fix split issues
* style
* weird
* style
* fix failing tests
* update
* nit fixing the whisper tests
* fix path
* update
---------
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: pavel <ubuntu@ip-10-90-0-11.ec2.internal>
Co-authored-by: qubvel <qubvel@gmail.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
|
||
![]() |
94f18cf23c
|
Add OmDet-Turbo (#31843)
* Add template with add-new-model-like * Add rough OmDetTurboEncoder and OmDetTurboDecoder * Add working OmDetTurbo convert to hf * Change OmDetTurbo encoder to RT-DETR encoder * Add swin timm backbone as default, add always partition fix for swin timm * Add labels and tasks caching * Fix make fix-copies * Format omdet_turbo * fix Tokenizer tests * Fix style and quality * Reformat omdet_turbo * Fix quality, style, copies * Standardize processor kwargs * Fix style * Add output_hidden_states and ouput_attentions * Add personalize multi-head attention, improve docstrings * Add integrated test and fix copy, style, quality * Fix unprotected import * Cleanup comments and fix unprotected imports * Add fix different prompts in batch (key_padding_mask) * Add key_padding_mask to custom multi-head attention module * Replace attention_mask by key_padding_mask * Remove OmDetTurboModel and refactor * Refactor processing of classes and abstract use of timm backbone * Add testing, fix output attentions and hidden states, add cache for anchors generation * Fix copies, style, quality * Add documentation, conver key_padding_mask to attention_mask * revert changes to backbone_utils * Fic docstrings rst * Fix unused argument in config * Fix image link documentation * Reorder config and cleanup * Add tokenizer_init_kwargs in merge_kwargs of the processor * Change AutoTokenizer to CLIPTokenizer in convert * Fix init_weights * Add ProcessorMixin tests, Fix convert while waiting on uniform kwargs * change processor kwargs and make task input optional * Fix omdet docs * Remove unnecessary tests for processor kwargs * Replace nested BatchEncoding output of the processor by a flattened BatchFeature * Make modifications from Pavel review * Add changes Amy review * Remove unused param * Remove normalize_before param, Modify processor call docstring * Remove redundant decoder class, add gradient checkpointing for decoder * Remove commented out code * Fix inference in fp16 and add fp16 integrated test * update omdet md doc * Add OmdetTurboModel * fix caching and nit * add OmDetTurboModel to tests * nit change repeated key test * Improve inference speed in eager mode * fix copies * Fix nit * remove OmdetTurboModel * [run-slow] omdet_turbo * [run-slow] omdet_turbo * skip dataparallel test * [run-slow] omdet_turbo * update weights to new path * remove unnecessary config in class --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-91-248.ec2.internal> |
||
![]() |
06e27e3dc0
|
[Pixtral] Improve docs, rename model (#33491)
* Improve docs, rename model * Fix style * Update repo id |
||
![]() |
e472e077c2
|
Granitemoe (#33207)
* first commit * drop tokenizer * drop tokenizer * drop tokenizer * drop convert * granite * drop tokenization test * mup * fix * reformat * reformat * reformat * fix docs * stop checking for checkpoint * update support * attention multiplier * update model * tiny drop * saibo drop * skip test * fix test * fix test * drop * drop useless imports * update docs * drop flash function * copied from * drop pretraining tp * drop pretraining tp * drop pretraining tp * drop unused import * drop code path * change name * softmax scale * head dim * drop legacy cache * rename params * cleanup * fix copies * comments * add back legacy cache * multipliers * multipliers * multipliers * text fix * fix copies * merge * multipliers * attention multiplier * drop unused imports * add granitemoe * add decoration * remove moe from sequenceclassification * fix test * fix * fix * fix * move rope? * merge * drop bias * drop bias * Update src/transformers/models/granite/configuration_granite.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * Update src/transformers/models/granite/modeling_granite.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix * fix * fix * drop * drop * fix * fix * cleanup * cleanup * fix * fix granite tests * fp32 test * fix * drop jitter * fix * rename * rename * fix config * add gen test --------- Co-authored-by: Yikang Shen <yikang.shn@gmail.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> |
||
![]() |
5af7d41e49
|
Codec integration (#33565)
* clean mimi commit * some nits suggestions from Arthur * make fixup * rename repo id + change readme * Update docs/source/en/model_doc/mimi.md Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * add flaky flag to batching equivalence due to audio_codes failing sometimes --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> |
||
![]() |
8bd2b1e8c2
|
Add support for Pixtral (#33449)
* initial commit * gloups * updates * work * weights match * nits * nits * updates to support the tokenizer :) * updates * Pixtral processor (#33454) * rough outline * Add in image break and end tokens * Fix * Udo some formatting changes * Set patch_size default * Fix * Fix token expansion * nit in conversion script * Fix image token list creation * done * add expected results * Process list of list of images (#33465) * updates * working image and processor * this is the expected format * some fixes * push current updated * working mult images! * add a small integration test * Uodate configuration docstring * Formatting * Config docstring fix * simplify model test * fixup modeling and etests * Return BatchMixFeature in image processor * fix some copies * update * nits * Update model docstring * Apply suggestions from code review * Fix up * updates * revert modeling changes * update * update * fix load safe * addd liscence * update * use pixel_values as required by the model * skip some tests and refactor * Add pixtral image processing tests (#33476) * Image processing tests * Add processing tests * woops * defaults reflect pixtral image processor * fixup post merge * images -> pixel values * oups sorry Mr docbuilder * isort * fix * fix processor tests * small fixes * nit * update * last nits * oups this was really breaking! * nits * is composition needs to be true --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> |
||
![]() |
43df47d8e7
|
Llava Onevision: add model (#32673)
* working version * fix copies * update * tests * update docs * codestyle * add more tests * add returns for docs * clean up * Update src/transformers/models/llava_onevision/processing_llava_onevision.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * updates * codestyle * style * shouldn't be reversed * [run-slow] llava_onevision * [run-slow] llava_onevision * add pooling in videos * [run-slow] llava_onevision * num-logits-to-keep * [run-slow] llava_onevision * [run-slow] llava_onevision * Update tests/test_modeling_common.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * video matched orig impl * fix tests * chat template was modified * Update docs/source/en/model_doc/llava_onevision.md Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * add morer info in the doc page --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> |
||
![]() |
ecd61c6286
|
Add OLMoE (#32406)
* Add OLMoE * Add OLMoE * Updates * Make norm optional; add keys * Add output * Add * Fix dtype * Fix eos config * Update * Add OLMoE * Fix OLMoE path * Format * Format * Rmv copy statement * Rmv copy statement * Format * Add copies * Cp rotary * Fix aming * Fix naming * Update RoPE integration; num_logits_to_keep; Add copy statements * Add eps to config * Format * Add aux loss * Adapt router_aux_loss_coef * Update md * Adapt * adapt tests |
||
![]() |
c35d2ccf5a
|
Granite language models (#31502)
* first commit * drop tokenizer * drop tokenizer * drop tokenizer * drop convert * granite * drop tokenization test * mup * fix * reformat * reformat * reformat * fix docs * stop checking for checkpoint * update support * attention multiplier * update model * tiny drop * saibo drop * skip test * fix test * fix test * drop * drop useless imports * update docs * drop flash function * copied from * drop pretraining tp * drop pretraining tp * drop pretraining tp * drop unused import * drop code path * change name * softmax scale * head dim * drop legacy cache * rename params * cleanup * fix copies * comments * add back legacy cache * multipliers * multipliers * multipliers * text fix * fix copies * merge * multipliers * attention multiplier * drop unused imports * fix * fix * fix * move rope? * Update src/transformers/models/granite/configuration_granite.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * Update src/transformers/models/granite/modeling_granite.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix * fix * fix * fix-copies * torch rmsnorm * add authors * change model path * fix * test * drop static cache test * uupdate readme * drop non-causal * readme * drop useless imports * Update docs/source/en/model_doc/granite.md Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update docs/source/en/model_doc/granite.md Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update docs/source/en/model_doc/granite.md Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> |
||
![]() |
19e6e80e10
|
support qwen2-vl (#32318)
* support-qwen2-vl * tidy * tidy * tidy * tidy * tidy * tidy * tidy * hyphen->underscore * make style * add-flash2-tipd * delete-tokenize=False * remove-image_processor-in-init-file * add-qwen2_vl-in-MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES * format-doct * support-Qwen2VLVisionConfig * remove-standardize_cache_format * fix-letter-varaibles * remove-torch-in-image-processor * remove-useless-docstring * fix-one-letter-varaible-name * change-block-name * default-quick-gelu-in-vision * remove-useless-doc * use-preimplemented-flash-forward * fix-doc * fix-image-processing-doc * fix-apply-rotary-embed * fix-flash-attn-sliding-window * refactor * remove-default_template * remove-reorder_cache * simple-get-rope_deltas * update-prepare_inputs_for_generation * update-attention-mask * update-rotary_seq_len * remove-state * kv_seq_length * remove-warning * _supports_static_cache * remove-legacy-cache * refactor * fix-replace * mrope-section-doc * code-quality * code-quality * polish-doc * fix-image-processing-test * update readme * Update qwen2_vl.md * fix-test * Update qwen2_vl.md * nit * processor-kwargs * hard-code-norm_layer * code-quality * discard-pixel-values-in-gen * fix-inconsistent-error-msg * unify-image-video * hidden_act * add-docstring * vision-encode-as-PreTrainedModel * pixel-to-target-dtype * update doc and low memoryvit * format * format * channel-foramt * fix vit_flashatt * format * inherit-Qwen2VLPreTrainedModel * simplify * format-test * remove-one-line-func-in-image-processing * avoid-one-line-reshape * simplify-rotary_seq_len * avoid-single-letter-variable * no-for-loop-sdpa * avoid-single-letter-variable * remove-one-line-reshape * remove-one-line-reshape * remove-no-rope-in-vit-logic * default-mrope * add-copied-from * more-docs-for-mrope * polish-doc * comment-and-link * polish-doc * single-letter-variables * simplify-image-processing * video->images * kv_seq_len-update * vision-rope-on-the-fly * vision-eager-attention * change-processor-order --------- Co-authored-by: baishuai <baishuai.bs@alibaba-inc.com> Co-authored-by: ShuaiBai623 <43326198+ShuaiBai623@users.noreply.github.com> |
||
![]() |
8260cb311e
|
Add Descript-Audio-Codec model (#31494)
* dac model * original dac works * add dac model * dac can be instatiated * add forward pass * load weights * all weights are used * convert checkpoint script ready * test * add feature extractor * up * make style * apply cookicutter * fix tests * iterate on FeatureExtractor * nit * update dac doc * replace nn.Sequential with nn.ModuleList * nit * apply review suggestions 1/2 * Update src/transformers/models/dac/modeling_dac.py Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * up * apply review suggestions 2/2 * update padding in FeatureExtractor * apply review suggestions * iterate on design and tests * add integration tests * feature extractor tests * make style * all tests pass * make style * fixup * apply review suggestions * fix-copies * apply review suggestions * apply review suggestions * Update docs/source/en/model_doc/dac.md Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com> * Update docs/source/en/model_doc/dac.md Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com> * anticipate transfer weights to descript * up * make style * apply review suggestions * update slow test values * update slow tests * update test values * update with CI values * update with vorace values * update test with slice * make style --------- Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com> |
||
![]() |
843e5e20ca
|
Add Flax Dinov2 (#31960)
* tfmsenv restored in main * installed flax * forward pass done and all tests passed * make fix-copies and cleaning the scripts * fixup attempt 1 * fixup attempt 2 * fixup third attempt * fixup attempt 4 * fixup attempt 5 * dinov2 doc fixed * FlaxDinov2Model + ForImageClassification added to OBJECTS_TO_IGNORE * external pos_encoding layer removed * fixup attempt 6 * fixed integration test values * fixup attempt 7 * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * comments removed * comment removed from the test * fixup * Update src/transformers/models/dinov2/modeling_flax_dinov2.py Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * new fixes 1 * interpolate_pos_encoding function removed * droppath rng fixed, pretrained beit copied-from still not working * modeling_flax_dinov2.py reformatted * Update tests/models/dinov2/test_modeling_flax_dinov2.py Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * added Copied from, to the tests * copied from statements removed from tests * fixed copied from statements in the tests * [run_slow] dinov2 --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> |
||
![]() |
a27182b7fc
|
Fix AutoConfig and AutoModel support for Llava-Next-Video (#32844)
* Fix: fix all model_type of Llava-Next-Video to llava_next_video * Fix doc for llava_next_video * * Fix formatting issues * Change llava-next-video.md file name into llava_next_video.md to make it compatible with implementation * Fix docs TOC for llava-next-video |