* Update modeling_whisper.py to support MPS backend
Fixed some issue with MPS backend.
First, the torch.std_mean is not implemented and is not scheduled for implementation, while the single torch.std and torch.mean are.
Second, MPS backend does not support float64, so it can not cast from float32 to float64. Inverting the double() when the matrix is in the cpu fixes the issue while should not change the logic.
* Found another instruction in modeling_whisper.py not implemented byor MPS
After a load test, where I transcribed a 2 hours audio file, I got into a branch that did not fix in the previous commit.
Similar fix, where the torch.std_mean is changed into torch.std and torch.mean
* Update modeling_whisper.py removed trailing white spaces
Removed trailing white spaces
* Update modeling_whisper.py to use is_torch_mps_available()
Using is_torch_mps_available() instead of capturing the NotImplemented exception
* Update modeling_whisper.py sorting the import block
Sorting the utils import block
* Update src/transformers/models/whisper/modeling_whisper.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/whisper/modeling_whisper.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/whisper/modeling_whisper.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix: minor enhancement and fix in bounding box visualization example
The example that was trying to visualize the bounding box was not considering an edge case,
where the bounding box can be un-normalized. So using the same set of code, we can not get
results with a different dataset with un-normalized bounding box. This commit fixes that.
* run make clean
* add an additional note on the scenarios where the box viz code works
---------
Co-authored-by: Anindyadeep <anindya@pop-os.localdomain>
* First draft
* More improvements
* More improvements
* Make all tests pass
* Remove script
* Update image processor
* Address comments
* Use new gradient checkpointing method
* Convert checkpoints, add integration test
* Do not keep aspect ratio for now
* Set keep_aspect_ratio=False for beit, add integration test
* Remove print statement
* fixes: code fixes on is_batched condition to also check for batched audio data in torch.Tensor format instead of only just checking for batched audio data in np.ndarray format
* Update src/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* refactor: code refactoring to remove torch framework dependency
* docs: updated docstring to add torch tensor compatibility
* test: add test cases to incorporate torch tensor inputs
* test: ran make fix-copies for code conformity
* test: refactor test to separate the test_call into test_call_numpy and test_call_torch
---------
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* Fix vision text dual encoder
* Small cleanup for wav2vec2 (not fixed yet)
* Small fix for vision_encoder_decoder
* Fix SAM builds
* Update TFBertTokenizer test with modern exporting + tokenizer
* Fix DeBERTa
* Fix DeBERTav2
* Try RAG fix but it's impossible to test locally
* Actually fix RAG now that I got FAISS working somehow
* Fix Wav2Vec2, add sermon
* Fix Hubert
* some nits
* update test
* add support d\sd[a
* remove some dummy inputs
* all good
* style
* nits
* fixes
* fix more copies
* nits
* styling
* fix
* Update src/transformers/models/mistral/modeling_mistral.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* add a slow test just to be sure
* fixup
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Iteratre over out_features instead of stage_names
* Update for all backbones
* Add tests
* Fix
* Align timm backbone behaviour with other backbones
* Fix tests
* Stricter checks on set out_features and out_indices
* Revert back stage selection logic
* Remove out-of-order logic
* Document restriction in docstrings
* move code to Trainer.evaluate to enable use of that function with multiple datasets
* test
* update doc string
* and a tip
* forgot the type
---------
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
In docstring for PreTrainedModel.resize_token_embeddings, correct definition of new_num_tokens parameter to read "the new number of tokens" (meaning the new size of the vocab) rather than "the number of new tokens" (number of newly added tokens only).