* remove make on the fly linear embedding
* start refactor
* big first refactor
* save intermediate
* save intermediat
* correct mask issue
* save tests
* refactor padding masks
* make all tests pass
* further refactor
* make pegasus test pass
* fix bool if
* fix leftover tests
* continue
* bart renaming
* delete torchscript test hack
* fix imports in tests
* correct shift
* fix docs and repo cons
* re-add fix for FSTM
* typo in test
* fix typo
* fix another typo
* continue
* hot fix 2 for tf
* small fixes
* refactor types linting
* continue
* finish refactor
* fix import in tests
* better bart names
* further refactor and add test
* delete hack
* apply sylvains and lysandres commens
* small perf improv
* further perf improv
* improv perf
* fix typo
* make style
* small perf improv
* Fix decoder not returning hidden states from the last layer
* Resolve conflict
* Change the way to gather hidden states
* Add decoder hidden states test
* Make pytest and black happy
* Remove redundant line
* remove new line
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* bart output hidden states upstream
* same w/ decoder
* add tests
* fix prophetnet
* fix gpt2 and ctrl
* fix fstm and skip test for reformer and longformer
* fix all models
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Use the CI to identify failing tests
* Remove from all examples and tests
* More default switch
* Fixes
* More test fixes
* More fixes
* Last fixes hopefully
* Use the CI to identify failing tests
* Remove from all examples and tests
* More default switch
* Fixes
* More test fixes
* More fixes
* Last fixes hopefully
* Run on the real suite
* Fix slow tests
* add training tests
* correct longformer
* fix docs
* fix some tests
* fix some more train tests
* remove ipdb
* fix multiple edge case model training
* fix funnel and prophetnet
* clean gpt models
* undo renaming of albert
* Output cross-attention with decoder attention output
* Update src/transformers/modeling_bert.py
* add cross-attention for t5 and bart as well
* fix tests
* correct typo in docs
* add sylvains and sams comments
* correct typo
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Output global_attentions in Longformer models
* make style
* small refactoring
* fix tests
* make fix-copies
* add for tf as well
* remove comments in test
* make fix-copies
* make style
* add docs
* make docstring pretty
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* first draft
* show design proposition for new generate method
* up
* make better readable
* make first version
* gpt2 tests pass
* make beam search for gpt2 work
* add first encoder-decoder code
* delete typo
* make t5 work
* save indermediate
* make bart work with beam search
* finish beam search bart / t5
* add default kwargs
* make more tests pass
* fix no bad words sampler
* some fixes and tests for all distribution processors
* fix test
* fix rag slow tests
* merge to master
* add nograd to generate
* make all slow tests pass
* speed up generate
* fix edge case bug
* small fix
* correct typo
* add type hints and docstrings
* fix typos in tests
* add beam search tests
* add tests for beam scorer
* fix test rag
* finish beam search tests
* move generation tests in seperate file
* fix generation tests
* more tests
* add aggressive generation tests
* fix tests
* add gpt2 sample test
* add more docstring
* add more docs
* finish doc strings
* apply some more of sylvains and sams comments
* fix some typos
* make fix copies
* apply lysandres and sylvains comments
* final corrections on examples
* small fix for reformer
* Test TF GPU CI
* Change cache
* Fix missing torch requirement
* Fix some model tests
Style
* LXMERT
* MobileBERT
* Longformer skip test
* XLNet
* The rest of the tests
* RAG goes OOM in multi gpu setup
* YAML test files
* Last fixes
* Skip doctests
* Fill mask tests
* Yaml files
* Last test fix
* Style
* Update cache
* Change ONNX tests to slow + use tiny model
* make the save_load special key tests common
* handle mbart
* cleaner solution
* fix
* move test_save_load_missing_keys back into fstm for now
* restore
* style
* add marian
* add pegasus
* blenderbot
* revert - no static embed
* Initial model
* Fix upsampling
* Add special cls token id and test
* Formatting
* Test and fist FunnelTokenizerFast
* Common tests
* Fix the check_repo script and document Funnel
* Doc fixes
* Add all models
* Write doc
* Fix test
* Initial model
* Fix upsampling
* Add special cls token id and test
* Formatting
* Test and fist FunnelTokenizerFast
* Common tests
* Fix the check_repo script and document Funnel
* Doc fixes
* Add all models
* Write doc
* Fix test
* Fix copyright
* Forgot some layers can be repeated
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/modeling_funnel.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Address review comments
* Update src/transformers/modeling_funnel.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Address review comments
* Update src/transformers/modeling_funnel.py
Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
* Slow integration test
* Make small integration test
* Formatting
* Add checkpoint and separate classification head
* Formatting
* Expand list, fix link and add in pretrained models
* Styling
* Add the model in all summaries
* Typo fixes
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
Since `generate()` does:
```
num_beams = num_beams if num_beams is not None else self.config.num_beams
```
This test fails if `model.config.num_beams > 1` (which is the case in the model I'm porting).
This fix makes the test setup unambiguous by passing an explicit `num_beams=1` to `generate()`.
Thanks.
* Feed forward chunking for Distilbert & Albert
* Added ff chunking for many other models
* Change model signature
* Added chunking for XLM
* Cleaned up by removing some variables.
* remove test_chunking flag
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* Chunked feed forward for Bert
This is an initial implementation to test applying feed forward chunking for BERT.
Will need additional modifications based on output and benchmark results.
* Black and cleanup
* Feed forward chunking in BertLayer class.
* Isort
* add chunking for all models
* fix docs
* Fix typo
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* Switch from return_tuple to return_dict
* Fix test
* [WIP] Test TF Flaubert + Add {XLM, Flaubert}{TokenClassification, MultipleC… (#5614)
* Test TF Flaubert + Add {XLM, Flaubert}{TokenClassification, MultipleChoice} models and tests
* AutoModels
Tiny tweaks
* Style
* Final changes before merge
* Re-order for simpler review
* Final fixes
* Addressing @sgugger's comments
* Test MultipleChoice
* Rework TF trainer (#6038)
* Fully rework training/prediction loops
* fix method name
* Fix variable name
* Fix property name
* Fix scope
* Fix method name
* Fix tuple index
* Fix tuple index
* Fix indentation
* Fix variable name
* fix eval before log
* Add drop remainder for test dataset
* Fix step number + fix logging datetime
* fix eval loss value
* use global step instead of step + fix logging at step 0
* Fix logging datetime
* Fix global_step usage
* Fix breaking loop + logging datetime
* Fix step in prediction loop
* Fix step breaking
* Fix train/test loops
* Force TF at least 2.2 for the trainer
* Use assert_cardinality to facilitate the dataset size computation
* Log steps per epoch
* Make tfds compliant with TPU
* Make tfds compliant with TPU
* Use TF dataset enumerate instead of the Python one
* revert previous commit
* Fix data_dir
* Apply style
* rebase on master
* Address Sylvain's comments
* Address Sylvain's and Lysandre comments
* Trigger CI
* Remove unused import
* Switch from return_tuple to return_dict
* Fix test
* Add recent model
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Julien Plu <plu.julien@gmail.com>
* DataParallel fixes:
1. switched to a more precise check
- if self.args.n_gpu > 1:
+ if isinstance(model, nn.DataParallel):
2. fix tests - require the same fixup under DataParallel as the training module
* another fix
* fix-5181
Padding to max sequence length while truncation to another length was wrong on slow tokenizers
* clean up and fix#5155
* fix XLM test
* Fix tests for Transfo-XL
* logging only above WARNING in tests
* switch slow tokenizers tests in @slow
* fix Marian truncation tokenization test
* style and quality
* make the test a lot faster by limiting the sequence length used in tests
* Configure all models to use output_hidden_states as argument passed to foward()
* Pass all tests
* Remove cast_bool_to_primitive in TF Flaubert model
* correct tf xlnet
* add pytorch test
* add tf test
* Fix broken tests
* Configure all models to use output_hidden_states as argument passed to foward()
* Pass all tests
* Remove cast_bool_to_primitive in TF Flaubert model
* correct tf xlnet
* add pytorch test
* add tf test
* Fix broken tests
* Refactor output_hidden_states for mobilebert
* Reset and remerge to master
Co-authored-by: Joseph Liu <joseph.liu@coinflex.com>
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* DOC: Replace instances of ``config.output_attentions`` with function argument ``output_attentions``
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* Fix further regressions in tests relating to `output_attentions`
Ensure proper propagation of `output_attentions` as a function parameter
to all model subclasses
* Fix more regressions in `test_output_attentions`
* Fix issues with BertEncoder
* Rename related variables to `output_attentions`
* fix pytorch tests
* fix bert and gpt2 tf
* Fix most TF tests for `test_output_attentions`
* Fix linter errors and more TF tests
* fix conflicts
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* fix conflicts
* fix conflicts
* fix conflicts
* fix conflicts
* fix pytorch tests
* fix conflicts
* fix conflicts
* Fix linter errors and more TF tests
* fix tf tests
* make style
* fix isort
* improve output_attentions
* improve tensorflow
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Kill model archive maps
* Fixup
* Also kill model_archive_map for MaskedBertPreTrainedModel
* Unhook config_archive_map
* Tokenizers: align with model id changes
* make style && make quality
* Fix CI
* first copy & past commit from Bert and morgans LSH code
* add easy way to compare to trax original code
* translate most of function
* make trax lsh self attention deterministic with numpy seed + copy paste code
* add same config
* add same config
* make layer init work
* implemented hash_vectors function for lsh attention
* continue reformer translation
* hf LSHSelfAttentionLayer gives same output as trax layer
* refactor code
* refactor code
* refactor code
* refactor
* refactor + add reformer config
* delete bogus file
* split reformer attention layer into two layers
* save intermediate step
* save intermediate step
* make test work
* add complete reformer block layer
* finish reformer layer
* implement causal and self mask
* clean reformer test and refactor code
* fix merge conflicts
* fix merge conflicts
* update init
* fix device for GPU
* fix chunk length init for tests
* include morgans optimization
* improve memory a bit
* improve comment
* factorize num_buckets
* better testing parameters
* make whole model work
* make lm model work
* add t5 copy paste tokenizer
* add chunking feed forward
* clean config
* add improved assert statements
* make tokenizer work
* improve test
* correct typo
* extend config
* add complexer test
* add new axial position embeddings
* add local block attention layer
* clean tests
* refactor
* better testing
* save intermediate progress
* clean test file
* make shorter input length work for model
* allow variable input length
* refactor
* make forward pass for pretrained model work
* add generation possibility
* finish dropout and init
* make style
* refactor
* add first version of RevNet Layers
* make forward pass work and add convert file
* make uploaded model forward pass work
* make uploaded model forward pass work
* refactor code
* add namedtuples and cache buckets
* correct head masks
* refactor
* made reformer more flexible
* make style
* remove set max length
* add attention masks
* fix up tests
* fix lsh attention mask
* make random seed optional for the moment
* improve memory in reformer
* add tests
* make style
* make sure masks work correctly
* detach gradients
* save intermediate
* correct backprob through gather
* make style
* change back num hashes
* rename to labels
* fix rotation shape
* fix detach
* update
* fix trainer
* fix backward dropout
* make reformer more flexible
* fix conflict
* fix
* fix
* add tests for fixed seed in reformer layer
* fix trainer typo
* fix typo in activations
* add fp16 tests
* add fp16 training
* support fp16
* correct gradient bug in reformer
* add fast gelu
* re-add dropout for embedding dropout
* better naming
* better naming
* renaming
* finalize test branch
* finalize tests
* add more tests
* finish tests
* fix
* fix type trainer
* fix fp16 tests
* fix tests
* fix tests
* fix tests
* fix issue with dropout
* fix dropout seeds
* correct random seed on gpu
* finalize random seed for dropout
* finalize random seed for dropout
* remove duplicate line
* correct half precision bug
* make style
* refactor
* refactor
* docstring
* remove sinusoidal position encodings for reformer
* move chunking to modeling_utils
* make style
* clean config
* make style
* fix tests
* fix auto tests
* pretrained models
* fix docstring
* update conversion file
* Update pretrained_models.rst
* fix rst
* fix rst
* update copyright
* fix test path
* fix test path
* fix small issue in test
* include reformer in generation tests
* add docs for axial position encoding
* finish docs
* Update convert_reformer_trax_checkpoint_to_pytorch.py
* remove isort
* include sams comments
* remove wrong comment in utils
* correct typos
* fix typo
* Update reformer.rst
* applied morgans optimization
* make style
* make gpu compatible
* remove bogus file
* big test refactor
* add example for chunking
* fix typo
* add to README
* remove output_past from pt
* make style
* add optional input length for gpt2
* add use cache to prepare input
* save memory in gpt2
* correct gpt2 test inputs
* make past input optional for gpt2
* finish use_cache for all models
* make style
* delete modeling_gpt2 change in test file
* correct docstring
* correct is true statements for gpt2
* fix conflicts
* update bart max length test
* correct spelling mistakes
* implemented model specific encode function
* fix merge conflicts
* better naming
* save intermediate state -> need to rethink strucuture a bit
* leave tf problem as it is for now
* current version
* add layers.pop
* remove ipdb
* make style
* clean return cut decoding
* remove ipdbs
* Fix restoring layers in the decoders that doesnt exists.
* push good intermediate solution for now
* fix conflicts
* always good to refuse to merge conflicts when rebasing
* fix small bug
* improve function calls
* remove unused file
* add correct scope behavior for t5_generate
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* add first copy past test to tf 2 generate
* add tf top_k_top_p_filter fn
* add generate function for TF
* add generate function for TF
* implemented generate for all models expect transfoXL
* implemented generate for all models expect transfoXL
* implemented generate for all models expect transfoXL
* make style
* change permission of test file to correct ones
* delete ipdb
* delete ipdb
* fix bug and finish simple gpt2 integration test
* clean test file
* clean test file
* make style
* make style
* make style
* make style
* change import style
* change import style
* make style
* make style
* add decorators
* add decorators
* fix tf ctrl bug dim => axis in TF
* make style
* make style
* refactored test file
* refactored test file
* take out test_torch_tf_conversion if nothing is defined
* take out test_torch_tf_conversion if nothing is defined
* remove useless files
* remove useless files
* fix conflicts
* fix conflicts
* fix conflicts
* fix conflicts
* fix conflicts
* solve conflicts
* solve conflicts
* fix conflicts
* fix conflicts
* merge conflicts
* delete ipdb
* exposed top_k_top_p_filtering fns
* delete weirdly created w! file
* add comment to test tf common modeling
* fix conflicts
* fix conflicts
* make style
* merge conflicts
* make style
* change tf.tensor.shape to shape_list(tensor)
* improving generation
* finalized special token behaviour for no_beam_search generation
* solved modeling_utils merge conflict
* solve merge conflicts in modeling_utils.py
* add run_generation improvements from PR #2749
* adapted language generation to not use hardcoded -1 if no padding token is available
* remove the -1 removal as hard coded -1`s are not necessary anymore
* add lightweight language generation testing for randomely initialized models - just checking whether no errors are thrown
* add slow language generation tests for pretrained models using hardcoded output with pytorch seed
* delete ipdb
* check that all generated tokens are valid
* renaming
* renaming Generation -> Generate
* make style
* updated so that generate_beam_search has same token behavior than generate_no_beam_search
* consistent return format for run_generation.py
* deleted pretrain lm generate tests -> will be added in another PR
* cleaning of unused if statements and renaming
* run_generate will always return an iterable
* make style
* consistent renaming
* improve naming, make sure generate function always returns the same tensor, add docstring
* add slow tests for all lmhead models
* make style and improve example comments modeling_utils
* better naming and refactoring in modeling_utils
* improving generation
* finalized special token behaviour for no_beam_search generation
* solved modeling_utils merge conflict
* solve merge conflicts in modeling_utils.py
* add run_generation improvements from PR #2749
* adapted language generation to not use hardcoded -1 if no padding token is available
* remove the -1 removal as hard coded -1`s are not necessary anymore
* add lightweight language generation testing for randomely initialized models - just checking whether no errors are thrown
* add slow language generation tests for pretrained models using hardcoded output with pytorch seed
* delete ipdb
* check that all generated tokens are valid
* renaming
* renaming Generation -> Generate
* make style
* updated so that generate_beam_search has same token behavior than generate_no_beam_search
* consistent return format for run_generation.py
* deleted pretrain lm generate tests -> will be added in another PR
* cleaning of unused if statements and renaming
* run_generate will always return an iterable
* make style
* consistent renaming
* improve naming, make sure generate function always returns the same tensor, add docstring
* add slow tests for all lmhead models
* make style and improve example comments modeling_utils
* better naming and refactoring in modeling_utils
* changed fast random lm generation testing design to more general one
* delete in old testing design in gpt2
* correct old variable name
* temporary fix for encoder_decoder lm generation tests - has to be updated when t5 is fixed
* adapted all fast random generate tests to new design
* better warning description in modeling_utils
* better comment
* better comment and error message
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
Created a link between the linear layer bias and the model attribute bias. This does not change anything for the user nor for the conversion scripts, but allows the `resize_token_embeddings` method to resize the bias as well as the weights of the decoder.
Added a test.
I suspect the wrapper classes were created in order to prevent the
abstract base class (TF)CommonModelTester from being included in test
discovery and running, because that would fail.
I solved this by replacing the abstract base class with a mixin.
Code changes are just de-indenting and automatic reformattings
performed by black to use the extra line space.
This construct isn't used anymore these days.
Running python tests/test_foo.py puts the tests/ directory on
PYTHONPATH, which isn't representative of how we run tests.
Use python -m unittest tests/test_foo.py instead.