mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
685 lines
28 KiB
Python
685 lines
28 KiB
Python
# coding=utf-8
|
|
# Copyright 2019 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import copy
|
|
import json
|
|
import logging
|
|
import os.path
|
|
import random
|
|
import tempfile
|
|
import unittest
|
|
import uuid
|
|
|
|
from transformers import is_torch_available
|
|
|
|
from .utils import require_torch, slow, torch_device
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
import numpy as np
|
|
|
|
from transformers import (
|
|
AdaptiveEmbedding,
|
|
PretrainedConfig,
|
|
PreTrainedModel,
|
|
BertModel,
|
|
BertConfig,
|
|
BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
|
|
)
|
|
|
|
|
|
def _config_zero_init(config):
|
|
configs_no_init = copy.deepcopy(config)
|
|
for key in configs_no_init.__dict__.keys():
|
|
if "_range" in key or "_std" in key or "initializer_factor" in key:
|
|
setattr(configs_no_init, key, 0.0)
|
|
return configs_no_init
|
|
|
|
|
|
@require_torch
|
|
class ModelTesterMixin:
|
|
|
|
model_tester = None
|
|
all_model_classes = ()
|
|
test_torchscript = True
|
|
test_pruning = True
|
|
test_resize_embeddings = True
|
|
test_head_masking = True
|
|
is_encoder_decoder = False
|
|
|
|
def test_save_load(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
out_2 = outputs[0].numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname)
|
|
model.to(torch_device)
|
|
with torch.no_grad():
|
|
after_outputs = model(**inputs_dict)
|
|
|
|
# Make sure we don't have nans
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
self.assertIn(
|
|
param.data.mean().item(),
|
|
[0.0, 1.0],
|
|
msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
|
|
)
|
|
|
|
def test_determinism(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
first = model(**inputs_dict)[0]
|
|
second = model(**inputs_dict)[0]
|
|
out_1 = first.cpu().numpy()
|
|
out_2 = second.cpu().numpy()
|
|
out_1 = out_1[~np.isnan(out_1)]
|
|
out_2 = out_2[~np.isnan(out_2)]
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
decoder_seq_length = (
|
|
self.model_tester.decoder_seq_length
|
|
if hasattr(self.model_tester, "decoder_seq_length")
|
|
else self.model_tester.seq_length
|
|
)
|
|
encoder_seq_length = (
|
|
self.model_tester.encoder_seq_length
|
|
if hasattr(self.model_tester, "encoder_seq_length")
|
|
else self.model_tester.seq_length
|
|
)
|
|
decoder_key_length = (
|
|
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
|
|
)
|
|
encoder_key_length = (
|
|
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
|
|
)
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.output_attentions = True
|
|
config.output_hidden_states = False
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
attentions = outputs[-1]
|
|
self.assertEqual(model.config.output_attentions, True)
|
|
self.assertEqual(model.config.output_hidden_states, False)
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
out_len = len(outputs)
|
|
|
|
if self.is_encoder_decoder:
|
|
self.assertEqual(out_len % 2, 0)
|
|
decoder_attentions = outputs[(out_len // 2) - 1]
|
|
self.assertEqual(model.config.output_attentions, True)
|
|
self.assertEqual(model.config.output_hidden_states, False)
|
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(decoder_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
|
|
)
|
|
|
|
# Check attention is always last and order is fine
|
|
config.output_attentions = True
|
|
config.output_hidden_states = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
|
|
self.assertEqual(model.config.output_attentions, True)
|
|
self.assertEqual(model.config.output_hidden_states, True)
|
|
|
|
self_attentions = outputs[-1]
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
|
|
def test_torchscript(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
self._create_and_check_torchscript(config, inputs_dict)
|
|
|
|
def test_torchscript_output_attentions(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
config.output_attentions = True
|
|
self._create_and_check_torchscript(config, inputs_dict)
|
|
|
|
def test_torchscript_output_hidden_state(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
config.output_hidden_states = True
|
|
self._create_and_check_torchscript(config, inputs_dict)
|
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict):
|
|
if not self.test_torchscript:
|
|
return
|
|
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init.torchscript = True
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
inputs = inputs_dict["input_ids"] # Let's keep only input_ids
|
|
|
|
try:
|
|
traced_gpt2 = torch.jit.trace(model, inputs)
|
|
except RuntimeError:
|
|
self.fail("Couldn't trace module.")
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
|
|
|
|
try:
|
|
torch.jit.save(traced_gpt2, pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't save module.")
|
|
|
|
try:
|
|
loaded_model = torch.jit.load(pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't load module.")
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
loaded_model.to(torch_device)
|
|
loaded_model.eval()
|
|
|
|
model_params = model.parameters()
|
|
loaded_model_params = loaded_model.parameters()
|
|
|
|
models_equal = True
|
|
for p1, p2 in zip(model_params, loaded_model_params):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
def test_headmasking(self):
|
|
if not self.test_head_masking:
|
|
return
|
|
|
|
global_rng.seed(42)
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
global_rng.seed()
|
|
|
|
config.output_attentions = True
|
|
config.output_hidden_states = True
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# Prepare head_mask
|
|
# Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
|
|
head_mask = torch.ones(
|
|
self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device
|
|
)
|
|
head_mask[0, 0] = 0
|
|
head_mask[-1, :-1] = 0
|
|
head_mask.requires_grad_(requires_grad=True)
|
|
inputs = inputs_dict.copy()
|
|
inputs["head_mask"] = head_mask
|
|
|
|
outputs = model(**inputs)
|
|
|
|
# Test that we can get a gradient back for importance score computation
|
|
output = sum(t.sum() for t in outputs[0])
|
|
output = output.sum()
|
|
output.backward()
|
|
multihead_outputs = head_mask.grad
|
|
|
|
attentions = outputs[-1]
|
|
|
|
# Remove Nan
|
|
for t in attentions:
|
|
self.assertLess(
|
|
torch.sum(torch.isnan(t)), t.numel() / 4
|
|
) # Check we don't have more than 25% nans (arbitrary)
|
|
attentions = [
|
|
t.masked_fill(torch.isnan(t), 0.0) for t in attentions
|
|
] # remove them (the test is less complete)
|
|
|
|
self.assertIsNotNone(multihead_outputs)
|
|
self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
|
|
self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
|
|
self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
|
|
self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
|
|
self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
|
|
self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
|
|
|
|
def test_head_pruning(self):
|
|
if not self.test_pruning:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
config.output_attentions = True
|
|
config.output_hidden_states = False
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
|
|
model.prune_heads(heads_to_prune)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
|
|
def test_head_pruning_save_load_from_pretrained(self):
|
|
if not self.test_pruning:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
config.output_attentions = True
|
|
config.output_hidden_states = False
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
|
|
model.prune_heads(heads_to_prune)
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name:
|
|
model.save_pretrained(temp_dir_name)
|
|
model = model_class.from_pretrained(temp_dir_name)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
attentions = outputs[-1]
|
|
self.assertEqual(attentions[0].shape[-3], 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
|
|
def test_head_pruning_save_load_from_config_init(self):
|
|
if not self.test_pruning:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
config.output_attentions = True
|
|
config.output_hidden_states = False
|
|
|
|
heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
|
|
config.pruned_heads = heads_to_prune
|
|
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
|
|
def test_head_pruning_integration(self):
|
|
if not self.test_pruning:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
config.output_attentions = True
|
|
config.output_hidden_states = False
|
|
|
|
heads_to_prune = {0: [0], 1: [1, 2]}
|
|
config.pruned_heads = heads_to_prune
|
|
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name:
|
|
model.save_pretrained(temp_dir_name)
|
|
model = model_class.from_pretrained(temp_dir_name)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
|
|
|
|
heads_to_prune = {0: [0], 2: [1, 2]}
|
|
model.prune_heads(heads_to_prune)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
|
|
|
|
self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
|
|
|
|
def test_hidden_states_output(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.output_hidden_states = True
|
|
config.output_attentions = False
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict)
|
|
hidden_states = outputs[-1]
|
|
self.assertEqual(model.config.output_attentions, False)
|
|
self.assertEqual(model.config.output_hidden_states, True)
|
|
self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[
|
|
self.model_tester.encoder_seq_length
|
|
if hasattr(self.model_tester, "encoder_seq_length")
|
|
else self.model_tester.seq_length,
|
|
self.model_tester.hidden_size,
|
|
],
|
|
)
|
|
|
|
def test_resize_tokens_embeddings(self):
|
|
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if not self.test_resize_embeddings:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
|
|
model_vocab_size = config.vocab_size
|
|
# Retrieve the embeddings and clone theme
|
|
model_embed = model.resize_token_embeddings(model_vocab_size)
|
|
cloned_embeddings = model_embed.weight.clone()
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
|
|
|
|
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
|
models_equal = True
|
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
def test_model_common_attributes(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
|
|
model.set_input_embeddings(torch.nn.Embedding(10, 10))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, torch.nn.Linear))
|
|
|
|
def test_tie_model_weights(self):
|
|
if not self.test_torchscript:
|
|
return
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def check_same_values(layer_1, layer_2):
|
|
equal = True
|
|
for p1, p2 in zip(layer_1.weight, layer_2.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
equal = False
|
|
return equal
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.torchscript = True
|
|
model_not_tied = model_class(config)
|
|
if model_not_tied.get_output_embeddings() is None:
|
|
continue
|
|
|
|
params_not_tied = list(model_not_tied.parameters())
|
|
|
|
config_tied = copy.deepcopy(config)
|
|
config_tied.torchscript = False
|
|
model_tied = model_class(config_tied)
|
|
params_tied = list(model_tied.parameters())
|
|
|
|
# Check that the embedding layer and decoding layer are the same in size and in value
|
|
self.assertGreater(len(params_not_tied), len(params_tied))
|
|
# self.assertTrue(check_same_values(embeddings, decoding))
|
|
|
|
# # Check that after modification, they remain the same.
|
|
# embeddings.weight.data.div_(2)
|
|
# # Check that the embedding layer and decoding layer are the same in size and in value
|
|
# self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
|
|
# self.assertTrue(check_same_values(embeddings, decoding))
|
|
|
|
# # Check that after modification, they remain the same.
|
|
# decoding.weight.data.div_(4)
|
|
# # Check that the embedding layer and decoding layer are the same in size and in value
|
|
# self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
|
|
# self.assertTrue(check_same_values(embeddings, decoding))
|
|
|
|
# Check that after resize they remain tied.
|
|
model_tied.resize_token_embeddings(config.vocab_size + 10)
|
|
params_tied_2 = list(model_tied.parameters())
|
|
self.assertGreater(len(params_not_tied), len(params_tied))
|
|
self.assertEqual(len(params_tied_2), len(params_tied))
|
|
|
|
# decoding.weight.data.mul_(20)
|
|
# # Check that the embedding layer and decoding layer are the same in size and in value
|
|
# self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
|
|
# self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))
|
|
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if not self.is_encoder_decoder:
|
|
input_ids = inputs_dict["input_ids"]
|
|
del inputs_dict["input_ids"]
|
|
else:
|
|
encoder_input_ids = inputs_dict["encoder_input_ids"]
|
|
decoder_input_ids = inputs_dict["decoder_input_ids"]
|
|
del inputs_dict["encoder_input_ids"]
|
|
del inputs_dict["decoder_input_ids"]
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
wte = model.get_input_embeddings()
|
|
if not self.is_encoder_decoder:
|
|
inputs_dict["inputs_embeds"] = wte(input_ids)
|
|
else:
|
|
inputs_dict["encoder_inputs_embeds"] = wte(encoder_input_ids)
|
|
inputs_dict["decoder_inputs_embeds"] = wte(decoder_input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs_dict)
|
|
|
|
|
|
class ConfigTester(object):
|
|
def __init__(self, parent, config_class=None, **kwargs):
|
|
self.parent = parent
|
|
self.config_class = config_class
|
|
self.inputs_dict = kwargs
|
|
|
|
def create_and_test_config_common_properties(self):
|
|
config = self.config_class(**self.inputs_dict)
|
|
self.parent.assertTrue(hasattr(config, "vocab_size"))
|
|
self.parent.assertTrue(hasattr(config, "hidden_size"))
|
|
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
|
|
self.parent.assertTrue(hasattr(config, "num_hidden_layers"))
|
|
|
|
def create_and_test_config_to_json_string(self):
|
|
config = self.config_class(**self.inputs_dict)
|
|
obj = json.loads(config.to_json_string())
|
|
for key, value in self.inputs_dict.items():
|
|
self.parent.assertEqual(obj[key], value)
|
|
|
|
def create_and_test_config_to_json_file(self):
|
|
config_first = self.config_class(**self.inputs_dict)
|
|
json_file_path = os.path.join(os.getcwd(), "config_" + str(uuid.uuid4()) + ".json")
|
|
config_first.to_json_file(json_file_path)
|
|
config_second = self.config_class.from_json_file(json_file_path)
|
|
os.remove(json_file_path)
|
|
self.parent.assertEqual(config_second.to_dict(), config_first.to_dict())
|
|
|
|
def run_common_tests(self):
|
|
self.create_and_test_config_common_properties()
|
|
self.create_and_test_config_to_json_string()
|
|
self.create_and_test_config_to_json_file()
|
|
|
|
|
|
global_rng = random.Random()
|
|
|
|
|
|
def ids_tensor(shape, vocab_size, rng=None, name=None):
|
|
"""Creates a random int32 tensor of the shape within the vocab size."""
|
|
if rng is None:
|
|
rng = global_rng
|
|
|
|
total_dims = 1
|
|
for dim in shape:
|
|
total_dims *= dim
|
|
|
|
values = []
|
|
for _ in range(total_dims):
|
|
values.append(rng.randint(0, vocab_size - 1))
|
|
|
|
return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
|
|
|
|
|
|
def floats_tensor(shape, scale=1.0, rng=None, name=None):
|
|
"""Creates a random float32 tensor of the shape within the vocab size."""
|
|
if rng is None:
|
|
rng = global_rng
|
|
|
|
total_dims = 1
|
|
for dim in shape:
|
|
total_dims *= dim
|
|
|
|
values = []
|
|
for _ in range(total_dims):
|
|
values.append(rng.random() * scale)
|
|
|
|
return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
|
|
|
|
|
|
@require_torch
|
|
class ModelUtilsTest(unittest.TestCase):
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
logging.basicConfig(level=logging.INFO)
|
|
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
|
config = BertConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, PretrainedConfig)
|
|
|
|
model = BertModel.from_pretrained(model_name)
|
|
model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, PreTrainedModel)
|
|
for value in loading_info.values():
|
|
self.assertEqual(len(value), 0)
|
|
|
|
config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
|
model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
|
self.assertEqual(model.config.output_attentions, True)
|
|
self.assertEqual(model.config.output_hidden_states, True)
|
|
self.assertEqual(model.config, config)
|