* Adding Llama FastTokenizer support.
- Requires https://github.com/huggingface/tokenizers/pull/1183 version
- Only support byte_fallback for llama, raise otherwise (safety net).
- Lots of questions are special tokens
How to test:
```python
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers import AutoTokenizer
from tokenizers import Tokenizer
tokenizer = AutoTokenizer.from_pretrained("huggingface/llama-7b")
if False:
new_tokenizer = Tokenizer.from_file("tok.json")
else:
new_tokenizer = convert_slow_tokenizer(tokenizer)
new_tokenizer.save("tok.json")
strings = [
"This is a test",
"生活的真谛是",
"生活的真谛是[MASK]。",
# XXX: This one is problematic because of special tokens
# "<s> Something something",
]
for string in strings:
encoded = tokenizer(string)["input_ids"]
encoded2 = new_tokenizer.encode(string).ids
assert encoded == encoded2, f"{encoded} != {encoded2}"
decoded = tokenizer.decode(encoded)
decoded2 = new_tokenizer.decode(encoded2)
assert decoded.strip() == decoded2, f"{repr(decoded)} != {repr(decoded2)}"
```
The converter + some test script.
The test script.
Tmp save.
Adding Fast tokenizer + tests.
Adding the tokenization tests.
Correct combination.
Small fix.
Fixing tests.
Fixing with latest update.
Rebased.
fix copies + normalized added tokens + copies.
Adding doc.
TMP.
Doc + split files.
Doc.
Versions + try import.
Fix Camembert + warnings -> Error.
Fix by ArthurZucker.
Not a decorator.
* Fixing comments.
* Adding more to docstring.
* Doc rewriting.
* Fix inverted conditional in TF common test!
* Make the same change in the PT tests file
* Make sure hidden states for GPT2 have the same output shape in PT/TF
* Minor fix to PT implementation of token classification loss
* Skip loss equivalence test for TFHubert because it keeps overflowing to inf
* Compute LM loss for TF the (weird) way it's computed in PT
* Skip loss equivalence test for Wav2Vec2 for the same reason as Hubert
* Fix - don't try to access the hidden states property when output is a tuple
* Initial commit
* more stash commit
* Yet another stash commit
* yet more stash commit
* Mostly working except for docs / repo consistency
* Stop importing model list from torch file
* Add TF BLIP models to docs
* Add auto classes
* Move get_text_features and get_image_features
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/blip/test_modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/blip/test_modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update tests/models/blip/test_modeling_tf_blip_text.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use channels_last convolutions in TF (better performance + compatibility)
* Remove _shape function
* Move multi-line statement to one line in PT + TF
* Specify tf.keras.layers instead of importing from it
* Remove test_gradient_checkpointing and empty test_training methods
* move some multi-line statements to one line
* Update docstring for generate
* Remove pruned heads set
* Remove self.seq_len_dim
* Fixed issues with loss computation, should resolve some tests. Also ensured that the PT version follows the config for output_attentions and output_hidden_states
* ensure original model follows config in more cases
* Skip the same cross-attention tests in the PT tests - didn't realize we did it twice!
* Add training args throughout the models and layers
* make fixup
* Fix docstring for inputs_embeds
* Add docstring for is_decoder
* Add docstrings to text models
* Remove redundant computation
* Add unpack_inputs / keras_serializable
* Add modeling_tf_blip to doctests
* Add config classes for keras serialization
* Changes to allow model porting with pt-to-tf
* Quick fix to decoder head and test tweaks
* Revert an issue with masking the embeddings outputs
* Allow missing keys in some equivalence tests (for unused layers)
* Add tf-pt equivalence tests back in
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make fixup
* Refactor invert_attention_mask out into tf_utils
* Re-enable cross-tests on the PT side too
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix RoFormerEncoder postion embedding when generate as decoder
* make fixup
* add test case for check generate with past key values
* remove duplicating code
LayoutLMv3TokenizerFast produces empty 'Ġ' token with `offset_mapping = (0, 0)`.
Next token is wrongly assumed to also be beginning of word and isn't
correctly assigned `pad_token_label`.
Modify test with text that produce 'Ġ' token.
Remove copy check from LayoutLMv2TokenizerFast for `_batch_encode_plus`.
solves issue: #19978
* Making sure we can use safetensors to serialize all the time.
* Expanding the tests for increased coverage.
* Update the test.
* Getting current state of affairs.
* Tentative fix.
* Fixing black version.
* Fixing the worst offenders.
* Try to modify less files.
* Fixing blip_2 (Weird solution right now).
* Fixing deta.
* Fix blip ?
* Missing extra newline.
* No deta modification.
* Adding some comments.
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Addressing comments.
* Addressing comments.
* creating warn_once.
* Warning_once !
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add draft changes
* fix failing wav2vec
* style
* make sure that the argument is saved + add tests
* style
* fixup
* update test
* default clean_up_tokenization_spaces to False for Bloom and Llama
* Update code based on review
Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>
* style
* quality
---------
Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>
* Initial commit
* update modeling code
* update doc
* add functions necessary
* fix impotrs
* revert changes
* fixup
* more styling to get going
* remove standalone encoder
* update code
* styling
* fix config and model
* update code and some refactoring
* make more tests pass
* Adding NLLB-200 - MoE - 54.5B for no language left behind
Fixes#21300
* fix mor common tests
* styke
* update testing file
* update
* update
* Router2 doc
* update check config with sparse layer
* add dummy router
* update current conversion script
* create on the fly conversion script
* Fixup
* style
* style 2
* fix empty return
* fix return
* Update default config sparse layers
* easier to create sparse layers
* update
* update conversion script
* update modeling
* add to toctree
* styling
* make ruff happy
* update docstring
* update conversion script
* update, will break tests but impelemting top2
* update
* ❗local groups are supported here
* ⚠️ Support for local groups is now removed ⚠️
This is because it has to work with model parallelism that we do not support
* finish simplificaiton
* Fix forward
* style
* fixup
* Update modelling and test, refactoring
* update tests
* remove final layer)norm as it is done in the FF
* routing works! Logits test added
* nit in test
* remove top1router
* style
* make sure sparse are tested. Had to change route_tokens a liottle bit
* add support for unslip models when converting
* fixup
* style
* update test s
* update test
* REFACTOR
* encoder outputs match!
* style
* update testing
* 🎉encoder and decoder logits match 🎉
* styleing
* update tests
* cleanup tests
* fix router test and CIs
* cleanup
* cleanup test styling
* fix tests
* Finally the generation tests match!
* cleanup
* update test
* style testing file
* remove script
* cleanup
* more cleanup
* nits
* update
* NLLB tokenizer is wrong and will be fixed soon
* use LongTensors
* update tests
* revert some small changes
* fix second expert sampling and batch prioritized routing
* update tests
* finish last tests
* make ruff happy
* update
* ruff again
* style
* Update docs/source/en/model_doc/nllb-moe.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Updates based on review
* style and fix import issue
* nit
* more nits
* cleanup
* styling
* update test_seconde_expert_policy
* fix name
* last nit on the markdown examples
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* First draft
* Fix integration test
* Remove script
* Fix test and typos
* Fix one more test
* Skip tied embeddings test
* Remove line
* Address comments
* add mega file structure and plain pytorch version of mega source code
* added config class with old naming conventions
* filled in mega documentation
* added config class and embeddings with optional token types
* updated notes
* starting the conversion process, deleted intermediate and added use_cache back to config
* renamed config attributes in modeling_mega.py
* checkpointing before refactoring incremental decoding functions
* removed stateful incremental key/values for EMA and self-attention
* refactored MovingAverageGatedAttention to remove stateful k/v history and use unified attention mask
* MovingAverageGatedAttention works with incremental decoding + past values, added sequence length enforcement
* more comments in MovingAverageGatedAttention + checkpointing before GatedCrossAttention
* bug fix in attention mask handling in MovingAverageGatedAttention
* removed incremental state from GatedCrossAttention and removed IncrementalState class
* finished gated cross attention and got MegaLayer working
* fixed causal masking in mega decoder
* fixed how padding and causal masks are passed through MegaLayer with and without k/v caching
* finished MegaModel; tested with encoder, decoder-only, and cross-attention type inputs; started work on downstream classes; removed mentions of position_ids
* added optional dense hidden layer for masked and causal LM classes
* docstring updates in MultiHeadEMA and GatedCrossAttention, removed unnecessary inputs in cross-attention
* removed before_attn_fn in Mega class and updated docstrings and comments up to there
* bug fix in MovingAverageGatedAttention masking
* working conversion of MLM checkpoint in scratchpad script -- perfect matches
* moved arg for hidden dense layer in LM head to config; discovered issue where from_pretrained is renaming gamma and beta parameters
* renamed gamma and beta parameters to avoid HF renaming when loading from checkpoint
* finished checkpoint conversion script
* cleanup old class in mega config script
* removed 'copied from' statements and passing integration tests
* added num_attention_heads=1 to config for integration compatibility, decoder tests working, generation tests failing
* fixed tuple output of megamodel
* all common tests passing after fixing issues in decoder, gradient retention, and initialization
* added mega-specific tests, ready for more documentation and style checks
* updated docstrings; checkpoint before style fixes
* style and quality checks, fixed initialization problem in float_tensor, ready for PR
* added mega to toctree
* removed unnecessary arg in megaconfig
* removed unused arg and fixed code samples with leftover roberta models
* Apply suggestions from code review
Applied all suggestions except the one renaming a class, as I'll need to update that througout
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixed issue where .view breaks batch dimension, conversion script fixed with absolute imports, updated readme with Mega->MEGA
* removed asserts in Mega code, renamed sequencenorm, gatedcrossattention, and NFFN, replaced get_activation_fn with ACTFN, and added sequencenorm to layer norms
* reformatted .forward() docstrings to match style and removed unused mask input in cross-attention
* removed all reset_parameters() methods and rolled into MegaPreTrainedModel._init_weights()
* renamed all single-letter variables and improved readability in tensor size comments, Mega->MEGA in 2 documentation files
* variable names in NFFN
* manual Mega->MEGA changes in docs
* Mega->MEGA in config auto
* style and quality fixes
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* renamed parameters and variables with confusing names, added copied from statements, moved fft conv to its own method, other cleanup from PR comments
* commit before dealing with merge conflicts
* made new attention activation functions available in ACT2FN and added generation test from OPT
* style and quality in activations and tests
* documentation fixes, renaming variables in dropout and rotary positions, used built-in causal masking, encoders->layers in MegaModel, moved comments into docstrings
* style and quality fixes after latest updates, before rotary position ids
* causal mask in MegaBlock docstring + added missing device passing
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* added Mega prefixes where missing, reverted MegaSequenceNorm to if-else, other module renaming requested in PR
* style and quality fixes + readme updates pointing to main
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Chunkable classification pipeline
The TokenClassificationPipeline is now able to process sequences longer than 512. No matter the framework, the model, the tokenizer. We just have to pass process_all=True and a stride number (optional). The behavior remains the same if you don't pass these optional parameters. For overlapping parts when using stride above 0, we consider only the max scores for each overlapped token in all chunks where the token is.
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* update with latest black format
* update black format
* Update token_classification.py
* Update token_classification.py
* format correction
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update comments
* Update src/transformers/pipelines/token_classification.py
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Update token_classification.py
Correct spaces, remove process_all and keep only stride. If stride is provided, the pipeline is applied to the whole text.
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update chunk aggregation
Update the chunk aggregation strategy based on entities aggregation.
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
Remove unnecessary pop from outputs dict
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update src/transformers/pipelines/token_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add chunking tests
* correct formating
* correct formatting
* correct model id for test chunking
* update scores with nested simplify
* Update test_pipelines_token_classification.py
* Update test_pipelines_token_classification.py
* update model to a tiny one
* Update test_pipelines_token_classification.py
* Adding smaller test for chunking.
* Fixup
* Update token_classification.py
* Update src/transformers/pipelines/token_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/pipelines/token_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Fixed bug to calculate correct xpath_sub_list in MarkupLMTokenizer. Earlier xpath_sub_list was same as xpath_tags_list
Co-authored-by: dusejat <dusejat@amazon.com>
* time to say goodbye, torch 1.7 and 1.8
* clean up torch_int_div
* clean up is_torch_less_than_1_8-9
* update
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Make sure CVT can be trained using mixed precision
* Add test for keras-fit with mixed-precision
* Update tests/models/cvt/test_modeling_tf_cvt.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
---------
Co-authored-by: gcuder <Gerald.Cuder@iacapps.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Use return_loss for BridgeTowerForContrastiveLearning, add example
* fix tests
* Update example in BridgeTowerForContrastiveLearning
* Update test_modeling_bridgetower.py
* update model output format
* minor update
* Update src/transformers/models/bridgetower/modeling_bridgetower.py
* make style
---------
Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Don't rescale if in and in range 0-255
* Raise value error if int values too large
* Update tests/test_image_transforms.py
* Update tests/test_image_transforms.py
* add `get_input_embeddings` to `WhisperForAudioClassification`
* add common tests
* fix another common test
* Update tests/models/whisper/test_modeling_whisper.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix style
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add new model of MGP-STR
* fix the check failings
* remove torch and numpy from mgp_tokenization
* remove unused import from modeling_mgp_str
* add test_processing_mgp_str
* rm test_processing_mgp_str.py
* add test_processing_mgp_str
* add test_processing_mgp_str
* add test_processing_mgp_str
* rm test_processing_mgp_str and add softmax outs to model
* rm test_processing_mgp_str and add softmax outs to model
* rewrite the code of mgp-str according to PR suggestions
* rewrite the code of mgp-str according to PR suggestions
* add new model of MGP-STR
* fix the check failings
* remove torch and numpy from mgp_tokenization
* remove unused import from modeling_mgp_str
* add test_processing_mgp_str
* rm test_processing_mgp_str.py
* add test_processing_mgp_str
* add test_processing_mgp_str
* add test_processing_mgp_str
* rm test_processing_mgp_str and add softmax outs to model
* rewrite the code of mgp-str according to PR suggestions
* rewrite the code of mgp-str according to PR suggestions
* remove representation_size from MGPSTRConfig
* reformat configuration_mgp_str.py
* format test_processor_mgp_str.py
* add test for tokenizer and complete model/processer test and model file
* rm Unnecessary tupple in modeling_mgp_str
* reduce hidden_size/layers/label_size in test_model
* add integration tests and change MGPSTR to Mgpstr
* add test for logit values
* reformat test model file
---------
Co-authored-by: yue kun <yuekun.wp@alibaba-inc.com>
* added informer to gitignore
* added informer to gitignore
* WIP informer2020
* added checking that instantiate works
* added config using gluonTS by kashif
* WIP config
* adding informeConfig. need to remove FeatureEmbedder
* done InformerConfig, but need to change the names
* Done informer model init. working on enc-dec
* added things to address, after reading again enc-dec in the paper
* done modeling - checking initialization work
* added informer to gitignore
* WIP informer2020
* added checking that instantiate works
* added config using gluonTS by kashif
* WIP config
* adding informeConfig. need to remove FeatureEmbedder
* done InformerConfig, but need to change the names
* Done informer model init. working on enc-dec
* added things to address, after reading again enc-dec in the paper
* done modeling - checking initialization work
* moved enc-dec init to InformerEncoder/Decoder init
* added 'init_std' to config, now model init works!
* WIP conversion script, and added code sources
* WIP conversion script: loading original informer pth works
* WIP conversion script: change defaults in the config
* WIP conversion script: supporting Informer input embedding
* WIP conversion script: added parameters for the informer embed
* WIP conversion script: change dim_feedforward=2048
* WIP conversion script: remove unused args for loading checkpoint
* just cleaning up
* DataEmbedding removed, after thinking with Kashif
* working on forward pass
* WIP forward pass: trying to establish working batch for forward pass
* cleaning and finalizing
* adding HF names and docs
* init after cleaning works
* WIP in tests
* added docs for the informer specific args
* fix style
* undo change
* cleaning informer, now need to work only enc-dec
* initial enc-dec classes
* added encoder and decoder
* added todo
* add todos for conv_layers
* added decoder docs from vanilla
* added encoder docs from vanilla
* remove encoder decoder from the original informer
* removed AttentionLayer from the original paper
* removed TriangularCausalMask, same as decoder_attention_mask
* initial sparse attention
* use conv_layers
* fixed test_config test
* fix parenthesis when itearting zip(layers, conv_layers)
* error found in prob attention, added sizes as comments
* fix sizes
* added proposal for q_reduce indexing, and remove unused
* WIP ProbMask, and changed factor=2 for testing
* remove unused libs for this PR for creating the env
* fix checking the attn_weights.size() after bmm
* Q_reduce: changed from torch.gather to simple slicing
* WIP calculate final attn_output
* finish adding v_aggregated, attn_output ready
* changed tgt_len to u in attention_mask, need to fix the size error
* comment attention_mask for encoder, and fix if cond for v_agg
* added ProbMask support (wip), removed old original code
* finished ProbMask 😃
* Revert "remove unused libs for this PR for creating the env"
This reverts commit 11a081e09e.
* fixes
* make style
* fix initial tests
* fix more tests
* dry
* make style
* remove unused files
* style
* added integration tests
* fix num_static_real_features
* fix header
* remove unused function
* fix example
* fix docs
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/modeling_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* fixes for reviewer
* use prediction_length from model
* fix style
* fixed informer.mdx
* added to index
* updated readme
* undo
* make fix-copies
* typo
* fix copy
* added Informer to toctree
* in order
* fixed comments
* remove unneeded new lines in docs
* make static real and cat optional
* fix use of distil conv layers
* fixed integration test
* added checkpoint for convlayer
* make fix-copies
* updated from time series model
* make fix-copies
* copy decoder
* fix unit tests
* updated scaling config
* fix integration tests
* IGNORE_NON_TESTED
* IGNORE_NON_AUTO_CONFIGURED
* IGNORE_NON_AUTO_CONFIGURED
* updated check configs
* fix formatting
* undo change from time series
* prediction_length should not be None
* aliign with the blog: prettify ProbSparse and change attention_factor to sampling_factor
* make style
* make fix-copies
* niels CR: update contributed by
* niels CR: update configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* niels CR: update kashif -> huggingface
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* niels CR: `sampling_factor` only relevant when `attention_type`=prob
* make style
* fixed U_part: added multiplication by `L_Q`
* fixed bug: remove `is not None` from `if config.distil`
* fixed test: `decoder_seq_length` to `encoder_seq_length` in cross_attentions check
* fix integration tests
* updated model hub
* do not shift as in training
* undo
* fix make-copies
* make fix-copies
* added `if prediction_length is None`
* changed `ProbSparseAttention` to `InformerProbSparseAttention`
* changed `V_sum` -> `v_mean_dim_time`
* changed `ConvLayer` to `InformerConvLayer` and fixed `super()`
* TimeSeriesTansformer->Informer in decoder's Copied from
* more descriptive in ProbSparse
* make style
* fix coped from
* Revert "added `if prediction_length is None`"
This reverts commit b4cbddfa05.
* fixed indent
* use InformerSinusoidalPositionalEmbedding
* make fix-style
* fix from #21860
* fix name
* make fix-copies
* use time series utils
* fix dec num_heads
* docstring
* added time series util doc
* _import_structure
* formatting
* changes from review
* make style
* fix docs
* fix doc
* removed NegativeLogLikelihood
---------
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* [Whisper] Add model for audio classification
* make fix-copies
* add to docs
* add docstring
* empty returns
* add code example
* switch to fleurs
* stick everything on one line
* [WIP] whisper refacto to support language output.
* Handling merges.
* A bit more cleanup and comments.
* Many improvements.
Lots of details everywhere.
* Cleanup old code and tests.
* Handle lone timestamp tokens (just recover when something bad happens).
* Adding return_language example.
* No ffmpeg.
* Hmm.
* Some corrections.
* Both fast and slow.
* New black.
* Update src/transformers/models/whisper/tokenization_whisper.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/whisper/tokenization_whisper.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Remove print.
* Undoing tests modifications.
* Smaller test modifications.
* Rename.
* Remove maxDiff.
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Make schedulers picklable by making lr_lambda fns global
* add unused _get_constant_schedule_lr_lambda arg
* remove unneeded _get_constant_schedule_lr_lamda
* add test
* make style
* rebase, remove torch dep, put lambda back
* repo-consistency and style
* Mark pipeline tests to skip them easily
* Mark the mixin as pipeline test
* Update src/transformers/testing_utils.py
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>