Commit Graph

41 Commits

Author SHA1 Message Date
thomwolf
936e813c84 clean up examples - added squad example and test 2019-07-12 14:16:06 +02:00
thomwolf
e55d4c4ede various updates to conversion, models and examples 2019-06-26 00:57:53 +02:00
Thomas Wolf
659af2cbd0
Merge pull request #604 from samuelbroscheit/master
Fixing issue "Training beyond specified 't_total' steps with schedule 'warmup_linear'" reported in #556
2019-06-14 16:49:24 +02:00
Meet Pragnesh Shah
e02ce4dc79
[hotfix] Fix frozen pooler parameters in SWAG example. 2019-06-11 15:13:53 -07:00
samuelbroscheit
94247ad6cb Make num_train_optimization_steps int 2019-05-13 12:38:22 +02:00
samuel.broscheit
49a77ac16f Clean up a little bit 2019-05-12 00:31:10 +02:00
samuel.broscheit
3bf3f9596f Fixing the issues reported in https://github.com/huggingface/pytorch-pretrained-BERT/issues/556
Reason for issue was that optimzation steps where computed from example size, which is different from actual size of dataloader when an example is chunked into multiple instances.

Solution in this pull request is to compute num_optimization_steps directly from len(data_loader).
2019-05-12 00:13:45 +02:00
burcturkoglu
00c7fd2b79 Division to num_train_optimizer of global_step in lr_this_step is removed. 2019-05-09 10:57:03 +03:00
burcturkoglu
fa37b4da77 Merge branch 'master' of https://github.com/huggingface/pytorch-pretrained-BERT 2019-05-09 10:55:24 +03:00
burcturkoglu
5289b4b9e0 Division to num_train_optimizer of global_step in lr_this_step is removed. 2019-05-09 10:51:38 +03:00
MottoX
74dbba64bc Prepare optimizer only when args.do_train is True 2019-05-02 19:09:29 +08:00
Thomas Wolf
2dee86319d
Merge pull request #527 from Mathieu-Prouveur/fix_value_training_loss
Update example files so that tr_loss is not affected by args.gradient…
2019-04-30 11:12:55 +02:00
Mathieu Prouveur
87b9ec3843 Fix tr_loss rescaling factor using global_step 2019-04-29 12:58:29 +02:00
Mathieu Prouveur
ed8fad7390 Update example files so that tr_loss is not affected by args.gradient_accumulation_step 2019-04-24 14:07:00 +02:00
thomwolf
d94c6b0144 fix training schedules in examples to match new API 2019-04-23 11:17:06 +02:00
thomwolf
60ea6c59d2 added best practices for serialization in README and examples 2019-04-15 15:00:33 +02:00
thomwolf
179a2c2ff6 update example to work with new serialization semantic 2019-04-15 14:33:23 +02:00
Yuqiang Xie
77944d1b31
add tqdm to the process of eval
Maybe better.
2019-03-21 20:59:33 +08:00
tseretelitornike
83857ffeaa
Added missing imports. 2019-03-15 12:45:48 +01:00
thomwolf
994d86609b fixing PYTORCH_PRETRAINED_BERT_CACHE use in examples 2019-03-06 10:21:24 +01:00
thomwolf
5c85fc3977 fix typo - logger info 2019-03-06 10:05:21 +01:00
thomwolf
eebc8abbe2 clarify and unify model saving logic in examples 2019-02-11 14:04:19 +01:00
Thomas Wolf
848aae49e1
Merge branch 'master' into python_2 2019-02-06 00:13:20 +01:00
thomwolf
448937c00d python 2 compatibility 2019-02-06 00:07:46 +01:00
thomwolf
1579c53635 more explicit notation: num_train_step => num_train_optimization_steps 2019-02-05 15:36:33 +01:00
Matej Svejda
5169069997 make examples consistent, revert error in num_train_steps calculation 2019-01-30 11:47:25 +01:00
Matej Svejda
9c6a48c8c3 fix learning rate/fp16 and warmup problem for all examples 2019-01-27 14:07:24 +01:00
thomwolf
c9fd350567 remove default when action is store_true in arguments 2019-01-07 13:01:54 +01:00
Grégory Châtel
186f75342e Adding new pretrained model to the help of the bert_model argument. 2019-01-02 14:00:59 +01:00
thomwolf
ae88eb88a4 set encoding to 'utf-8' in calls to open 2018-12-14 13:48:58 +01:00
thomwolf
e1eab59aac no fp16 on evaluation 2018-12-13 14:54:02 +01:00
thomwolf
087798b7fa fix reloading model for evaluation in examples 2018-12-13 14:48:12 +01:00
thomwolf
0f544625f4 fix swag example for work with apex 2018-12-13 13:35:59 +01:00
Grégory Châtel
df34f22854 Removing the dependency to pandas and using the csv module to load data. 2018-12-10 17:45:23 +01:00
Grégory Châtel
d429c15f25 Removing old code from copy-paste. 2018-12-06 19:19:21 +01:00
Grégory Châtel
63c45056aa Finishing the code for the Swag task. 2018-12-06 18:53:05 +01:00
Grégory Châtel
c45d8ac554 Storing the feature of each choice as a dict for readability. 2018-12-06 16:01:28 +01:00
Grégory Châtel
0812aee2c3 Fixing problems in convert_examples_to_features. 2018-12-06 15:53:07 +01:00
Grégory Châtel
f2b873e995 convert_examples_to_features code and small improvements. 2018-12-06 15:40:47 +01:00
Grégory Châtel
83fdbd6043 Adding read_swag_examples to load the dataset. 2018-12-06 14:02:46 +01:00
Grégory Châtel
7183cded4e SwagExample class. 2018-12-06 13:39:44 +01:00