mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 11:08:23 +06:00
88 lines
2.7 KiB
Python
88 lines
2.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""BERT finetuning runner."""
|
|
|
|
import pandas as pd
|
|
|
|
|
|
class SwagExample(object):
|
|
"""A single training/test example for the SWAG dataset."""
|
|
def __init__(self,
|
|
swag_id,
|
|
context_sentence,
|
|
start_ending,
|
|
ending_0,
|
|
ending_1,
|
|
ending_2,
|
|
ending_3,
|
|
label = None):
|
|
self.swag_id = swag_id
|
|
self.context_sentence = context_sentence
|
|
self.start_ending = start_ending
|
|
self.ending_0 = ending_0
|
|
self.ending_1 = ending_1
|
|
self.ending_2 = ending_2
|
|
self.ending_3 = ending_3
|
|
self.label = label
|
|
|
|
def __str__(self):
|
|
return self.__repr__()
|
|
|
|
def __repr__(self):
|
|
l = [
|
|
f'swag_id: {self.swag_id}',
|
|
f'context_sentence: {self.context_sentence}',
|
|
f'start_ending: {self.start_ending}',
|
|
f'ending_0: {self.ending_0}',
|
|
f'ending_1: {self.ending_1}',
|
|
f'ending_2: {self.ending_2}',
|
|
f'ending_3: {self.ending_3}',
|
|
]
|
|
|
|
if self.label is not None:
|
|
l.append(f'label: {self.label}')
|
|
|
|
return ', '.join(l)
|
|
|
|
def read_swag_examples(input_file, is_training):
|
|
input_df = pd.read_csv(input_file)
|
|
|
|
if is_training and 'label' not in input_df.columns:
|
|
raise ValueError(
|
|
"For training, the input file must contain a label column.")
|
|
|
|
examples = [
|
|
SwagExample(
|
|
swag_id = row['fold-ind'],
|
|
context_sentence = row['sent1'],
|
|
start_ending = row['sent2'],
|
|
ending_0 = row['ending0'],
|
|
ending_1 = row['ending1'],
|
|
ending_2 = row['ending2'],
|
|
ending_3 = row['ending3'],
|
|
label = row['label'] if is_training else None
|
|
) for _, row in input_df.iterrows()
|
|
]
|
|
|
|
return examples
|
|
|
|
|
|
if __name__ == "__main__":
|
|
examples = read_swag_examples('data/train.csv', True)
|
|
print(len(examples))
|
|
for example in examples[:5]:
|
|
print('###########################')
|
|
print(example)
|