* Reformer model head classification implementation for text classification
* Reformat the reformer model classification code
* PR review comments, and test case implementation for reformer for classification head changes
* CI/CD reformer for classification head test import error fix
* CI/CD test case implementation added ReformerForSequenceClassification to all_model_classes
* Code formatting- fixed
* Normal test cases added for reformer classification head
* Fix test cases implementation for the reformer classification head
* removed token_type_id parameter from the reformer classification head
* fixed the test case for reformer classification head
* merge conflict with master fixed
* merge conflict, changed reformer classification to accept the choice_label parameter added in latest code
* refactored the the reformer classification head test code
* reformer classification head, common transform test cases fixed
* final set of the review comment, rearranging the reformer classes and docstring add to classification forward method
* fixed the compilation error and text case fix for reformer classification head
* Apply suggestions from code review
Remove unnecessary dup
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add B I handling to grouping
* Add fix to include separate entity as last token
* move last_idx definition outside loop
* Use first entity in entity group as reference for entity type
* Add test cases
* Take out extra class accidentally added
* Return tf ner grouped test to original
* Take out redundant last entity
* Get last_idx safely
Co-authored-by: ColleterVi <36503688+ColleterVi@users.noreply.github.com>
* Fix first entity comment
* Create separate functions for group_sub_entities and group_entities (splitting call method to testable functions)
* Take out unnecessary last_idx
* Remove additional forward pass test
* Move token classification basic tests to separate class
* Move token classification basic tests back to monocolumninputtestcase
* Move base ner tests to nerpipelinetests
* Take out unused kwargs
* Add back mandatory_keys argument
* Add unitary tests for group_entities in _test_ner_pipeline
* Fix last entity handling
* Fix grouping fucntion used
* Add typing to group_sub_entities and group_entities
Co-authored-by: ColleterVi <36503688+ColleterVi@users.noreply.github.com>
* Default decoder inputs to encoder ones for T5 if neither are specified.
* Fixing typo, now all tests are passing.
* Changing einsum to operations supported by onnx
* Adding a test to ensure T5 can be exported to onnx op>9
* Modified test for onnx export to make it faster
* Styling changes.
* Styling changes.
* Changing notation for matrix multiplication
Co-authored-by: Abel Riboulot <tkai@protomail.com>
* Added data collator for XLNet language modeling and related calls
Added DataCollatorForXLNetLanguageModeling in data/data_collator.py
to generate necessary inputs for language modeling training with
XLNetLMHeadModel. Also added related arguments, logic and calls in
examples/language-modeling/run_language_modeling.py.
Resolves: #4739, #2008 (partially)
* Changed name to `DataCollatorForPermutationLanguageModeling`
Changed the name of `DataCollatorForXLNetLanguageModeling` to the more general `DataCollatorForPermutationLanguageModelling`.
Removed the `--mlm` flag requirement for the new collator and defined a separate `--plm_probability` flag for its use.
CTRL uses a CLM loss just like GPT and GPT-2, so should work out of the box with this script (provided `past` is taken care of
similar to `mems` for XLNet).
Changed calls and imports appropriately.
* Added detailed comments, changed variable names
Added more detailed comments to `DataCollatorForPermutationLanguageModeling` in `data/data_collator.py` to explain working. Also cleaned up variable names and made them more informative.
* Added tests for new data collator
Added tests in `tests/test_trainer.py` for DataCollatorForPermutationLanguageModeling based on those in DataCollatorForLanguageModeling. A specific test has been added to check for odd-length sequences.
* Fixed styling issues
* Exposing prepare_for_model for both slow & fast tokenizers
* Update method signature
* The traditional style commit
* Hide the warnings behind the verbose flag
* update default truncation strategy and prepare_for_model
* fix tests and prepare_for_models methods
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
* Added PipelineException
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* fill-mask pipeline raises exception when more than one mask_token detected.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Put everything in a function.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Added tests on pipeline fill-mask when input has != 1 mask_token
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Fix numel() computation for TF
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Addressing PR comments.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Remove function typing to avoid import on specific framework.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Quality.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Retry typing with @julien-c tip.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Quality².
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Simplify fill-mask mask_token checking.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Trigger CI
* remove references to old API in docstring - update data processors
* style
* fix tests - better type checking error messages
* better type checking
* include awesome fix by @LysandreJik for #5310
* updated doc and examples
* Add new parameter `pad_to_multiple_of` on tokenizers.
* unittest for pad_to_multiple_of
* Add .name when logging enum.
* Fix missing .items() on dict in tests.
* Add special check + warning if the tokenizer doesn't have proper pad_token.
* Use the correct logger format specifier.
* Ensure tokenizer with no pad_token do not modify the underlying padding strategy.
* Skip test if tokenizer doesn't have pad_token
* Fix RobertaTokenizer on empty input
* Format.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* fix and updating to simpler API
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
* avoid recursion in id checks for fast tokenizers
* better typings and fix#5232
* align slow and fast tokenizers behaviors for Roberta and GPT2
* style and quality
* fix tests - improve typings
* fix-5181
Padding to max sequence length while truncation to another length was wrong on slow tokenizers
* clean up and fix#5155
* fix XLM test
* Fix tests for Transfo-XL
* logging only above WARNING in tests
* switch slow tokenizers tests in @slow
* fix Marian truncation tokenization test
* style and quality
* make the test a lot faster by limiting the sequence length used in tests
* Add return lengths
* make pad a bit more flexible so it can be used as collate_fn
* check all kwargs sent to encoding method are known
* fixing kwargs in encodings
* New AddedToken class in python
This class let you specify specifique tokenization behaviors for some special tokens. Used in particular for GPT2 and Roberta, to control how white spaces are stripped around special tokens.
* style and quality
* switched to hugginface tokenizers library for AddedTokens
* up to tokenizer 0.8.0-rc3 - update API to use AddedToken state
* style and quality
* do not raise an error on additional or unused kwargs for tokenize() but only a warning
* transfo-xl pretrained model requires torch
* Update src/transformers/tokenization_utils.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* fix#5081 and improve backward compatibility (slightly)
* add nlp to setup.cfg - style and quality
* align default to previous default
* remove test that doesn't generalize
* Configure all models to use output_hidden_states as argument passed to foward()
* Pass all tests
* Remove cast_bool_to_primitive in TF Flaubert model
* correct tf xlnet
* add pytorch test
* add tf test
* Fix broken tests
* Configure all models to use output_hidden_states as argument passed to foward()
* Pass all tests
* Remove cast_bool_to_primitive in TF Flaubert model
* correct tf xlnet
* add pytorch test
* add tf test
* Fix broken tests
* Refactor output_hidden_states for mobilebert
* Reset and remerge to master
Co-authored-by: Joseph Liu <joseph.liu@coinflex.com>
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* Fixed resize_token_embeddings for transfo_xl model
* Fixed resize_token_embeddings for transfo_xl.
Added custom methods to TransfoXLPreTrainedModel for resizing layers of
the AdaptiveEmbedding.
* Updated docstring
* Fixed resizinhg cutoffs; added check for new size of embedding layer.
* Added test for resize_token_embeddings
* Fixed code quality
* Fixed unchanged cutoffs in model.config
* Added feature to move added tokens in tokenizer.
* Fixed code quality
* Added feature to move added tokens in tokenizer.
* Fixed code quality
* Fixed docstring, renamed sym to oken.
Co-authored-by: Rafael Weingartner <rweingartner.its-b2015@fh-salzburg.ac.at>
* add ElectraForMultipleChoice
* add test_for_multiple_choice
* add ElectraForMultipleChoice in auto model
* add ElectraForMultipleChoice in all_model_classes
* add SequenceSummary related parameters
* get rid pooler, use SequenceSummary instead
* add electra multiple choice test
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Added is_fast property on BatchEncoding to indicate if the object comes from a Fast Tokenizer.
* Added __get_state__() & __set_state__() to be pickable.
* Correct tokens() return type from List[int] to List[str]
* Added unittest for BatchEncoding pickle/unpickle
* Added unittest for BatchEncoding is_fast
* More careful checking on BatchEncoding unpickle tests.
* Formatting.
* is_fast should assertTrue on Rust tokenizers.
* Ensure tensorflow has correct way of checking array_equal
* More formatting.
* Fixed resize_token_embeddings for transfo_xl model
* Fixed resize_token_embeddings for transfo_xl.
Added custom methods to TransfoXLPreTrainedModel for resizing layers of
the AdaptiveEmbedding.
* Updated docstring
* Fixed resizinhg cutoffs; added check for new size of embedding layer.
* Added test for resize_token_embeddings
* Fixed code quality
* Fixed unchanged cutoffs in model.config
Co-authored-by: Rafael Weingartner <rweingartner.its-b2015@fh-salzburg.ac.at>
* ElectraForQuestionAnswering
* udate __init__
* add test for electra qa model
* add ElectraForQuestionAnswering in auto models
* add ElectraForQuestionAnswering in all_model_classes
* fix outputs, input_ids defaults to None
* add ElectraForQuestionAnswering in docs
* remove commented line
* DOC: Replace instances of ``config.output_attentions`` with function argument ``output_attentions``
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* Fix further regressions in tests relating to `output_attentions`
Ensure proper propagation of `output_attentions` as a function parameter
to all model subclasses
* Fix more regressions in `test_output_attentions`
* Fix issues with BertEncoder
* Rename related variables to `output_attentions`
* fix pytorch tests
* fix bert and gpt2 tf
* Fix most TF tests for `test_output_attentions`
* Fix linter errors and more TF tests
* fix conflicts
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* fix conflicts
* fix conflicts
* fix conflicts
* fix conflicts
* fix pytorch tests
* fix conflicts
* fix conflicts
* Fix linter errors and more TF tests
* fix tf tests
* make style
* fix isort
* improve output_attentions
* improve tensorflow
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add tpu and torchscipt for benchmark
* fix name in tests
* "fix email"
* make style
* better log message for tpu
* add more print and info for tpu
* allow possibility to print tpu metrics
* correct cpu usage
* fix test for non-install
* remove bugus file
* include psutil in testing
* run a couple of times before tracing in torchscript
* do not allow tpu memory tracing for now
* make style
* add torchscript to env
* better name for torch tpu
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
* Better None gradients handling
* Apply Style
* Apply Style
* Create a loss class per task to compute its respective loss
* Add loss classes to the ALBERT TF models
* Add loss classes to the BERT TF models
* Add question answering and multiple choice to TF Camembert
* Remove prints
* Add multiple choice model to TF DistilBERT + loss computation
* Add question answering model to TF Electra + loss computation
* Add token classification, question answering and multiple choice models to TF Flaubert
* Add multiple choice model to TF Roberta + loss computation
* Add multiple choice model to TF XLM + loss computation
* Add multiple choice and question answering models to TF XLM-Roberta
* Add multiple choice model to TF XLNet + loss computation
* Remove unused parameters
* Add task loss classes
* Reorder TF imports + add new model classes
* Add new model classes
* Bugfix in TF T5 model
* Bugfix for TF T5 tests
* Bugfix in TF T5 model
* Fix TF T5 model tests
* Fix T5 tests + some renaming
* Fix inheritance issue in the AutoX tests
* Add tests for TF Flaubert and TF XLM Roberta
* Add tests for TF Flaubert and TF XLM Roberta
* Remove unused piece of code in the TF trainer
* bugfix and remove unused code
* Bugfix for TF 2.2
* Apply Style
* Divide TFSequenceClassificationAndMultipleChoiceLoss into their two respective name
* Apply style
* Mirror the PT Trainer in the TF one: fp16, optimizers and tb_writer as class parameter and better dataset handling
* Fix TF optimizations tests and apply style
* Remove useless parameter
* Bugfix and apply style
* Fix TF Trainer prediction
* Now the TF models return the loss such as their PyTorch couterparts
* Apply Style
* Ignore some tests output
* Take into account the SQuAD cls_index, p_mask and is_impossible parameters for the QuestionAnswering task models.
* Fix names for SQuAD data
* Apply Style
* Fix conflicts with 2.11 release
* Fix conflicts with 2.11
* Fix wrongname
* Add better documentation on the new create_optimizer function
* Fix isort
* logging_dir: use same default as PyTorch
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
* Refactor tensor creation in tokenizers.
* Make sure to convert string to TensorType
* Refactor convert_to_tensors_
* Introduce numpy tensor creation
* Format
* Add unittest for TensorType creation from str
* sorting imports
* Added unittests for numpy tensor conversion.
* Do not use in-place version for squeeze as numpy doesn't provide such feature.
* Added extra parameter prepend_batch_axis: bool on prepare_for_model.
* Ensure test_np_encode_plus_sent_to_model is not executed if encoder/decoder model.
* style.
* numpy tests require_torch for now while flax not merged.
* Hopefully will make flake8 happy.
* One more time 🎶
* Kill model archive maps
* Fixup
* Also kill model_archive_map for MaskedBertPreTrainedModel
* Unhook config_archive_map
* Tokenizers: align with model id changes
* make style && make quality
* Fix CI
* pass on tokenizer to pipeline
* order input names when convert to onnx
* update style
* remove unused imports
* make ordered inputs list needs to be mutable
* add test custom bert model
* remove unused imports
* better api
* improve automatic setting of global attention mask
* fix longformer bug
* fix global attention mask in test
* fix global attn mask flatten
* fix slow tests
* update docstring
* update docs and make more robust
* improve attention mask
* add multiple choice for longformer
* add models to docs
* adapt docstring
* add test to longformer
* add longformer for mc in init and modeling auto
* fix tests
* added LongformerForQuestionAnswering
* add LongformerForQuestionAnswering
* fix import for LongformerForMaskedLM
* add LongformerForQuestionAnswering
* hardcoded sep_token_id
* compute attention_mask if not provided
* combine global_attention_mask with attention_mask when provided
* update example in docstring
* add assert error messages, better attention combine
* add test for longformerForQuestionAnswering
* typo
* cast gloabl_attention_mask to long
* make style
* Update src/transformers/configuration_longformer.py
* Update src/transformers/configuration_longformer.py
* fix the code quality
* Merge branch 'longformer-for-question-answering' of https://github.com/patil-suraj/transformers into longformer-for-question-answering
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Adds predict stage for glue tasks, and generate result files which could be submitted to gluebenchmark.com website.
* Use Split enum + always output the label name
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
* first commit
* bug fixes
* better examples
* undo padding
* remove wrong VOCAB_FILES_NAMES
* License
* make style
* make isort happy
* unit tests
* integration test
* make `black` happy by undoing `isort` changes!!
* lint
* no need for the padding value
* batch_size not bsz
* remove unused type casting
* seqlen not seq_len
* staticmethod
* `bert` selfattention instead of `n2`
* uint8 instead of bool + lints
* pad inputs_embeds using embeddings not a constant
* black
* unit test with padding
* fix unit tests
* remove redundant unit test
* upload model weights
* resolve todo
* simpler _mask_invalid_locations without lru_cache + backward compatible masked_fill_
* increase unittest coverage
* Distributed eval: SequentialDistributedSampler + gather all results
* For consistency only write to disk from world_master
Close https://github.com/huggingface/transformers/issues/4272
* Working distributed eval
* Hook into scripts
* Fix#3721 again
* TPU.mesh_reduce: stay in tensor space
Thanks @jysohn23
* Just a small comment
* whitespace
* torch.hub: pip install packaging
* Add test scenarii
* Add index to be returned by NerPipeline to allow for the creation of
* Add entity groups
* Convert entity list to dict
* Add entity to entity_group_disagg atfter updating entity gorups
* Change 'group' parameter to 'grouped_entities'
* Add unit tests for grouped NER pipeline case
* Correct variable name typo for NER_FINETUNED_MODELS
* Sync grouped tests to recent test updates
* Added generic ONNX conversion script for PyTorch model.
* WIP initial TF support.
* TensorFlow/Keras ONNX export working.
* Print framework version info
* Add possibility to check the model is correctly loading on ONNX runtime.
* Remove quantization option.
* Specify ONNX opset version when exporting.
* Formatting.
* Remove unused imports.
* Make functions more generally reusable from other part of the code.
* isort happy.
* flake happy
* Export only feature-extraction for now
* Correctly check inputs order / filter before export.
* Removed task variable
* Fix invalid args call in load_graph_from_args.
* Fix invalid args call in convert.
* Fix invalid args call in infer_shapes.
* Raise exception and catch in caller function instead of exit.
* Add 04-onnx-export.ipynb notebook
* More WIP on the notebook
* Remove unused imports
* Simplify & remove unused constants.
* Export with constant_folding in PyTorch
* Let's try to put function args in the right order this time ...
* Disable external_data_format temporary
* ONNX notebook draft ready.
* Updated notebooks charts + wording
* Correct error while exporting last chart in notebook.
* Adressing @LysandreJik comment.
* Set ONNX opset to 11 as default value.
* Set opset param mandatory
* Added ONNX export unittests
* Quality.
* flake8 happy
* Add keras2onnx dependency on extras["tf"]
* Pin keras2onnx on github master to v1.6.5
* Second attempt.
* Third attempt.
* Use the right repo URL this time ...
* Do the same for onnxconverter-common
* Added keras2onnx and onnxconveter-common to 1.7.0 to supports TF2.2
* Correct commit hash.
* Addressing PR review: Optimization are enabled by default.
* Addressing PR review: small changes in the notebook
* setup.py comment about keras2onnx versioning.
* Improvements to the wandb integration
* small reorg + no global necessary
* feat(trainer): log epoch and final metrics
* Simplify logging a bit
* Fixup
* Fix crash when just running eval
Co-authored-by: Chris Van Pelt <vanpelt@gmail.com>
Co-authored-by: Boris Dayma <boris.dayma@gmail.com>
* Created using Colaboratory
* [examples] reorganize files
* remove run_tpu_glue.py as superseded by TPU support in Trainer
* Bugfix: int, not tuple
* move files around
* Rewritten batch support in pipelines.
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Fix imports sorting 🔧
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Set pad_to_max_length=True by default on Pipeline.
* Set pad_to_max_length=False for generation pipelines.
Most of generation models doesn't have padding token.
* Address @joeddav review comment: Uniformized *args.
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Address @joeddav review comment: Uniformized *args (second).
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* first copy & past commit from Bert and morgans LSH code
* add easy way to compare to trax original code
* translate most of function
* make trax lsh self attention deterministic with numpy seed + copy paste code
* add same config
* add same config
* make layer init work
* implemented hash_vectors function for lsh attention
* continue reformer translation
* hf LSHSelfAttentionLayer gives same output as trax layer
* refactor code
* refactor code
* refactor code
* refactor
* refactor + add reformer config
* delete bogus file
* split reformer attention layer into two layers
* save intermediate step
* save intermediate step
* make test work
* add complete reformer block layer
* finish reformer layer
* implement causal and self mask
* clean reformer test and refactor code
* fix merge conflicts
* fix merge conflicts
* update init
* fix device for GPU
* fix chunk length init for tests
* include morgans optimization
* improve memory a bit
* improve comment
* factorize num_buckets
* better testing parameters
* make whole model work
* make lm model work
* add t5 copy paste tokenizer
* add chunking feed forward
* clean config
* add improved assert statements
* make tokenizer work
* improve test
* correct typo
* extend config
* add complexer test
* add new axial position embeddings
* add local block attention layer
* clean tests
* refactor
* better testing
* save intermediate progress
* clean test file
* make shorter input length work for model
* allow variable input length
* refactor
* make forward pass for pretrained model work
* add generation possibility
* finish dropout and init
* make style
* refactor
* add first version of RevNet Layers
* make forward pass work and add convert file
* make uploaded model forward pass work
* make uploaded model forward pass work
* refactor code
* add namedtuples and cache buckets
* correct head masks
* refactor
* made reformer more flexible
* make style
* remove set max length
* add attention masks
* fix up tests
* fix lsh attention mask
* make random seed optional for the moment
* improve memory in reformer
* add tests
* make style
* make sure masks work correctly
* detach gradients
* save intermediate
* correct backprob through gather
* make style
* change back num hashes
* rename to labels
* fix rotation shape
* fix detach
* update
* fix trainer
* fix backward dropout
* make reformer more flexible
* fix conflict
* fix
* fix
* add tests for fixed seed in reformer layer
* fix trainer typo
* fix typo in activations
* add fp16 tests
* add fp16 training
* support fp16
* correct gradient bug in reformer
* add fast gelu
* re-add dropout for embedding dropout
* better naming
* better naming
* renaming
* finalize test branch
* finalize tests
* add more tests
* finish tests
* fix
* fix type trainer
* fix fp16 tests
* fix tests
* fix tests
* fix tests
* fix issue with dropout
* fix dropout seeds
* correct random seed on gpu
* finalize random seed for dropout
* finalize random seed for dropout
* remove duplicate line
* correct half precision bug
* make style
* refactor
* refactor
* docstring
* remove sinusoidal position encodings for reformer
* move chunking to modeling_utils
* make style
* clean config
* make style
* fix tests
* fix auto tests
* pretrained models
* fix docstring
* update conversion file
* Update pretrained_models.rst
* fix rst
* fix rst
* update copyright
* fix test path
* fix test path
* fix small issue in test
* include reformer in generation tests
* add docs for axial position encoding
* finish docs
* Update convert_reformer_trax_checkpoint_to_pytorch.py
* remove isort
* include sams comments
* remove wrong comment in utils
* correct typos
* fix typo
* Update reformer.rst
* applied morgans optimization
* make style
* make gpu compatible
* remove bogus file
* big test refactor
* add example for chunking
* fix typo
* add to README
* First commit to add a TF version of the trainer.
* Make the TF trainer closer to what looks the PT trainer
* Refactoring common code between the PT and TF trainer into an util file.
* Some bugfix + better similarity with the PT trainer
* Add missing class in transformers init
* Bugfix over prediction + use classification report instead of simple metrics
* Fix name error
* Fix optimization tests + style
* Apply style
* Several bugfix for multi-gpu training
* Apply style
* Apply style
* Add glue example for the TF trainer
* Several bugix + address the reviews
* Fix on the TF training args file
* Add a debug mode
* Bugfix in utils_ner.py when segment_ids is None
* Apply style
* Apply style
* Add TPU strategy
* Fix selection strategy
There's an inconsistency right now where:
- we load some models into CACHE_DIR
- and some models in the default cache
- and often, in both for the same models
When running the RUN_SLOW tests, this takes a lot of disk space, time, and bandwidth.
I'd rather always use the default cache
* Add GenerationPipeline
* Fix parameter names
* Correct parameter __call__ parameters
* Add model type attribute and correct function calls for prepare_input
* Take out trailing commas from init attributes
* Remove unnecessary tokenization line
* Implement support for multiple text inputs
* Apply generation support for multiple input text prompts
* Take out tensor coersion
* Take out batch index
* Add text prompt to return sequence
* Squeeze token tensore before decoding
* Return only a single list of sequences if only one prompt was used
* Correct results variable name
* Add GenerationPipeline to SUPPORTED_TASKS with the alias , initalized w GPT2
* Registedred AutoModelWithLMHead for both pt and t
* Update docstring for GenerationPipeline
* Add kwargs parameter to mode.generate
* Take out kwargs parameter after all
* Add generation pipeline example in pipeline docstring
* Fix max length by squeezing tokens tensor
* Apply ensure_tensor_on_device to pytorch tensor
* Include generation step in torch.no_grad
* Take out input from prepare_xlm_input and set 'en' as default xlm_language
* Apply framework specific encoding during prepare_input
* Format w make style
* Move GenerationPipeline import to follow proper import sorting
* Take out training comma from generation dict
* Apply requested changes
* Change name to TextGenerationPipeline
* Apply TextGenerationPipeline rename to __init___
* Changing alias to
* Set input mapping as input to ensure_tensor_on_device
* Fix assertion placement
* Add test_text_generation
* Add TextGenerationPipeline to PipelineCommonTests
* Take out whitespace
* Format __init__ w black
* Fix __init__ style
* Forman __init___
* Add line to end of __init__
* Correct model tokenizer set for test_text_generation
* Ensure to return list of list, not list of string (to pass test)
* Limit test models to only 3 to limit runtime to address circleCI timeout error
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Remove argument docstring, __init__, add additional __call__ arguments, and reformat results to list of dict
* Fix blank result list
* Add TextGenerationPipeline to pipelines.rst
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix typos from adding PADDING_TEXT_TOKEN_LENGTH
* Fix incorrectly moved result list
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
* Update src/transformers/pipelines.py
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>
* Add back generation line and make style
* Take out blank whitespace
* Apply new alis, text-generation, to test_pipelines
* Fix text generation alias in test
* Update src/transformers/pipelines.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
* doc
* [tests] Add sample files for a regression task
* [HUGE] Trainer
* Feedback from @sshleifer
* Feedback from @thomwolf + logging tweak
* [file_utils] when downloading concurrently, get_from_cache will use the cached file for subsequent processes
* [glue] Use default max_seq_length of 128 like before
* [glue] move DataTrainingArguments around
* [ner] Change interface of InputExample, and align run_{tf,pl}
* Re-align the pl scripts a little bit
* ner
* [ner] Add integration test
* Fix language_modeling with API tweak
* [ci] Tweak loss target
* Don't break console output
* amp.initialize: model must be on right device before
* [multiple-choice] update for Trainer
* Re-align to 827d6d6ef0
* First pass on utility classes and python tokenizers
* finishing cleanup pass
* style and quality
* Fix tests
* Updating following @mfuntowicz comment
* style and quality
* Fix Roberta
* fix batch_size/seq_length inBatchEncoding
* add alignement methods + tests
* Fix OpenAI and Transfo-XL tokenizers
* adding trim_offsets=True default for GPT2 et RoBERTa
* style and quality
* fix tests
* add_prefix_space in roberta
* bump up tokenizers to rc7
* style
* unfortunately tensorfow does like these - removing shape/seq_len for now
* Update src/transformers/tokenization_utils.py
Co-Authored-By: Stefan Schweter <stefan@schweter.it>
* Adding doc and docstrings
* making flake8 happy
Co-authored-by: Stefan Schweter <stefan@schweter.it>