[gpu slow tests] fix mbart-large-enro gpu tests (#4472)

This commit is contained in:
Sam Shleifer 2020-05-19 19:45:31 -04:00 committed by GitHub
parent 48c3a70b4e
commit 956c4c4eb4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -231,7 +231,7 @@ class BartTranslationTests(unittest.TestCase):
"""Only load the model if needed."""
if self._model is None:
model = BartForConditionalGeneration.from_pretrained("mbart-large-en-ro")
self._model = model
self._model = model.to(torch_device)
return self._model
@slow
@ -257,10 +257,7 @@ class BartTranslationTests(unittest.TestCase):
)
}
translated_tokens = model.generate(input_ids=inputs["input_ids"].to(torch_device), num_beams=5,)
decoded = [
self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for g in translated_tokens
]
decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
self.assertEqual(expected_translation_romanian, decoded[0])
def test_mbart_enro_config(self):
@ -576,11 +573,13 @@ class BartModelIntegrationTests(unittest.TestCase):
PGE_ARTICLE = """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
EXPECTED_SUMMARY = "California's largest power company has begun shutting off power to tens of thousands of homes and businesses in the state."
dct = tok.batch_encode_plus([PGE_ARTICLE], max_length=1024, pad_to_max_length=True, return_tensors="pt",)
dct = tok.batch_encode_plus([PGE_ARTICLE], max_length=1024, pad_to_max_length=True, return_tensors="pt",).to(
torch_device
)
hypotheses_batch = model.generate(
input_ids=dct["input_ids"].to(torch_device),
attention_mask=dct["attention_mask"].to(torch_device),
input_ids=dct["input_ids"],
attention_mask=dct["attention_mask"],
num_beams=2,
max_length=62,
min_length=11,
@ -590,9 +589,7 @@ class BartModelIntegrationTests(unittest.TestCase):
decoder_start_token_id=model.config.eos_token_id,
)
decoded = [
tok.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in hypotheses_batch
]
decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True,)
self.assertEqual(EXPECTED_SUMMARY, decoded[0])
def test_xsum_config_generation_params(self):