* Initial commit
* Make some fixes
* Make PT model full forward pass
* Drop TF & Flax implementation, fix copies etc
* Add Flax model and update some corresponding stuff
* Drop some TF things
* Update config and flax local attn
* Add encoder_attention_type to config
* .
* Update docs
* Do some cleansing
* Fix some issues -> make style; add some docs
* Fix position_bias + mask addition + Update tests
* Fix repo consistency
* Fix model consistency by removing flax operation over attn_mask
* [WIP] Add PT TGlobal LongT5
* .
* [WIP] Add flax tglobal model
* [WIP] Update flax model to use the right attention type in the encoder
* Fix flax tglobal model forward pass
* Make the use of global_relative_attention_bias
* Add test suites for TGlobal model
* Fix minor bugs, clean code
* Fix pt-flax equivalence though not convinced with correctness
* Fix LocalAttn implementation to match the original impl. + update READMEs
* Few updates
* Update: [Flax] improve large model init and loading #16148
* Add ckpt conversion script accoring to #16853 + handle torch device placement
* Minor updates to conversion script.
* Typo: AutoModelForSeq2SeqLM -> FlaxAutoModelForSeq2SeqLM
* gpu support + dtype fix
* Apply some suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* * Remove (de)parallelize stuff
* Edit shape comments
* Update README.md
* make fix-copies
* Remove caching logic for local & tglobal attention
* Apply another batch of suggestions from code review
* Add missing checkpoints
* Format converting scripts
* Drop (de)parallelize links from longT5 mdx
* Fix converting script + revert config file change
* Revert "Remove caching logic for local & tglobal attention"
This reverts commit 2a619828f6ddc3e65bd9bb1725a12b77fa883a46.
* Stash caching logic in Flax model
* Make side relative bias used always
* Drop caching logic in PT model
* Return side bias as it was
* Drop all remaining model parallel logic
* Remove clamp statements
* Move test files to the proper place
* Update docs with new version of hf-doc-builder
* Fix test imports
* Make some minor improvements
* Add missing checkpoints to docs
* Make TGlobal model compatible with torch.onnx.export
* Replace some np.ndarray with jnp.ndarray
* Fix TGlobal for ONNX conversion + update docs
* fix _make_global_fixed_block_ids and masked neg value
* update flax model
* style and quality
* fix imports
* remove load_tf_weights_in_longt5 from init and fix copies
* add slow test for TGlobal model
* typo fix
* Drop obsolete is_parallelizable and one warning
* Update __init__ files to fix repo-consistency
* fix pipeline test
* Fix some device placements
* [wip]: Update tests -- need to generate summaries to update expected_summary
* Fix quality
* Update LongT5 model card
* Update (slow) summarization tests
* make style
* rename checkpoitns
* finish
* fix flax tests
Co-authored-by: phungvanduy <pvduy23@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: patil-suraj <surajp815@gmail.com>
* added cbs to notebooks, made copy-paste error fix in generation_utils
* initial push for mctc model
* mctc feature extractor done
* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.
* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.
* passing attention, now struggling to figure out how attention masks make sense here
* works when excluding attention masks. ask later how one would integrate attention maskshere
* bizarre configuration error (model prefix comes first in config dict json and messes up the order)
* all passing but bizzarre config dict ordering issue when to_dict
* passing all major tests
* feature extraction, processor, tokenizer added & tests passing
* style & consistency & other logistical fixes
* copy paste fix
* model after feature extraction working
* commiting final feature extraction results; need to fix normalization
* feature extraction passing tests; probably should add tests on the specific flashlight-copied functions?
* delete print ; format code a bit
* fixing tests
* passing major tests
* fixing styles
* completed tokenization test with real example; not sure if these values are entirely correct.
* last test fixes from local
* reverting accidentally included custom setup configs
* remove load tf weights; fix config error
* testing couldnt import featureextractor
* fix docs
* fix docs
* resolving comments
* style fixes
* style fixes
* Update to MCTCConv1dSubSampler
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* relposemb fixes
* conv1d name issue; expecting config fail with paraentheses
* fix config issue
* fix config issue
* fix config issue
* change everything to MCTCT
* fixing naming change errors
* archive list
* copyrights and docs
* copyrights and docs
* copyrights and docs
* merge resolution
* move tests, fix to changed optionaldependency structure
* test directories changed
* fixing tests
* how to avoid tf tests?
* how to avoid tf tests?
* tests passing locally
* allow mctctprocessor imported any env
* allow mctctprocessor imported any env
* fixed second round of feedback, need to fix docs
* doc changes not being applied
* all fixed
* style fix
* feedback fixes
* fix copies and feature extraction style fix
* Update tests/models/visual_bert/test_modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* copy paste huggingface:main visual bert
* added eof newline to visual bert; all tests are passing otherwise
* fix slow tests by adding attention mask
* change model id to speechbrain
* make fix-copies
* fix readme unwanted deletes
* fixing readmes, make fix-copies
* consistent M-CTC-T naming
* Update src/transformers/models/mctct/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* all fixed but variable naming
* adjust double quotes
* fixed variable names
* copyright and mr quilter
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* correct slow tests
* make fix-copies
* Update src/transformers/models/mctct/configuration_mctct.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/mctct/configuration_mctct.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* m-ctc-t not mctct
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* First version - OPT model
* Final changes
- putting use cache to False
* few changes
- remove commented block
* few changes
- remove unecessary files
* fix style issues
* few changes
- remove a test file
- added the logits test
* Update src/transformers/models/auto/tokenization_auto.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add gen tests
* few changes
- rm mask filling example on docstring
* few changes
- remove useless args
* some changes
- more tests should pass now
- needs to clean more
- documentation still needs to be done
* fix code quality
* major changes
- change attention architecture to BART-like
- modify some tests
- style fix
* rm useless classes
- remove opt for:
- QA
- cond generation
- seq classif
* Removed autodoc calls to non-existant classes
TOkenizers are not implemented
* Update src/transformers/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/modeling_tf_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Replaced OPTTokeniser with GPT2 tokenizer
* added GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")
* Removed OPTTokenizer
* make style
* Make style replaces
``` ...).unsqueeze(```
by
``` >>>).unsqueeze(```
* make repo consistency
* Removed PretrainedOPTModel
* fix opt.mdx removed other heads
* fix init, removed 3 heads
* removed heads
* finished cleaning head
* removed seauence classif and question answering
* removed unused imports
* removed useless dummy object for QA, SC and CG
* removed tests for removed useless dummy object for QA, SC and CG
* Removed head_mask using encoder layers which don't exist
* fixed test
* fix line
* added OPT to toctree
* Updated model path with pushed weigths
* fix model path
* fixed code quality
* fixed embeddings and generation tests
* update paths
* clean comments
* removed OPTClassificationHead for sentence classification
* renamed hidden layer
* renamed num layers to standard num_hidden_layers
* num_attention_heads fix
* changes for 125m
* add first version for 125m
* add first version - flax
* add new version
* causal LM output
* replace output type with BaseModelOutputWithPastAndCrossAttentions
* revert working config from 150m to 350m
* clean
* removed decoder input ids
* fixed embed dim
* more embed_dim issues
* make style + removed enc_dec test
* update falx model
* removed troublesome copy
* added is_encoder_decoder=False to config
* added set_input emb fuinction to model class
* requires torch on embed test
* use head mask instead of decoder head mask input param solves a test
* 8 test remaining, update
* Updated create_and_check_decoder_model_past_large_inputs
* Make style
* update op tokenizer with condition
* make style
* See if I can push
* some clean up
* remove linear head hack
* save intermediate
* save correct attention
* add copied from from bart
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix part of the reviewss
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* same changes in naming / conversion
* correct mask
* more fixes
* delete FlaxOPT and TfOPT
* clean traces of Flax and Tf
* fix mask
* fixed positionnal embedding length when past key value is provoded
* get 125m, 6.7b to work
* Added do_layer_norm
* solved mismatch in load dictionnary
* clean up preapre opt input dict
* fixed past key value as bool
* fix previus
* fixed return dict False tuple issue
* All tests are passing
* Make style
* Ignore OPTDecoder non tested
* make fix-copies
* make repo consistency
* small fix
* removed uselss @torch.no_grad decorator
* make styl;e
* fix previous opt test
* style
* make style
* added opt documentation
* update OPT_PRETRAINED_MODEL_ARCHIVE_LIST
* up
* more fixes
* model & config work
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* added comment on padding hack (+2)
* cleaup
* review update
* docstring for missing arg
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/opt/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update pretrained map
* update path and tests
* make style
* styling
* make consistency
* add gpt2 tok new
* more tok fixes
* Update src/transformers/models/auto/tokenization_auto.py
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/models/opt/test_modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update based on reviews
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* make style
* make tokenizer auto tests pass
* apply Lysandre suggestion
* finish tests
* add some good tokenizer tests
* improve docs slighly
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* [WIP] Add FLAVA model
This PR aims to add [FLAVA](ihttps://arxiv.org/abs/2112.04482) model to the transformers repo.
Following checklist delineates the list of things to be done for this PR
to be complete:
[x] Flava init
[x] Flava base models
[x] Flava layers
[x] Flava Configs
[x] Flava encoders
[x] Flava pretraining models
[ ] Flava classification/retrieval models (To be added in a separate PR)
[x] Documentation updates
[x] Imports updates
[x] Argstring updates
[x] Flava pretrained checkpoints
[x] Flava tests
[x] Flava processors
[x] Sanity check
[x] Lint
* Created the Decision Transformer Modle
* updating tests, copy to other machine
* Added last hidden size to Decision Transformer modelling outputs
* Removed copy of original DT file
* made a temporary change to gpt2 to have it conform with the Decision Transformer version
* Updated tests
* Ignoring a file used to test the DT model
* added comments to config file
* added comments and argument descriptions to decision transformer file
* Updated doc
* Ran "make style"
* Remove old model imports
* Removed unused imports, cleaned up init file
* Update docs/source/model_doc/decision_transformer.mdx
added my username
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Reverted changes made to gpt2
* Removed datasets submodule
* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states
* Added support for return of hidden states, attentions and return dict of gpt2 model.
* Updated tests to include many of the ModelTesterMixin tests.
The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes
* Added missing line to the end of gpt2 file
* Added an integration test for the Decision Transformer
Test performs and autoregressive evaluation for two time steps
* Set done and info to _ to fix failing test
* Updated integration test to be deterministic and check expected outputs
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unnecessary config options
* Cleaned up commented code and old comments.
* Cleaned up commented code.
* Changed DecisionTransformer to Decision Transformer
* Added Decision Transformer to the main README file
* Added copy of GTP2 called DecisionTranformerGPT2Model
* isorted imports
* isorted imports
* Added model to non-English README files
* Ran make fix-copies and corrected some cases.
* Updated index file to include Decision Transformer
* Added gpt2 model as copy inside the Decision Transformer model file
* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS
* Deleted redundant checkpoint files (I don't know how these got committed)
* Removed testing files. (These should have never been committed)
* Removed accidentally committed files
* Moved the Decision Transformer test to its own directory
* Add type hints for Pegasus (#16324)
* Funnel type hints (#16323)
* add pt funnel type hints
* add tf funnel type hints
* Add type hints for ProphetNet PyTorch (#16272)
* [GLPN] Improve docs (#16331)
* Add link to notebook
* Add link
* Fix bug
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Added type hints for Pytorch Marian calls (#16200)
* Added type hinting for forward functions in pytorch marian
* typo correction
* Removed type hints on functions from BART per Suraj Patil request
* fix import pb
* fix typo
* corrected tuple call
* ran black
* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List
* Fixing copies to roformer and pegasus
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
* Moved DecisionTransformOutput to modeling_decision_transformer
* Moved the example usage to research project and cleaned comments
* Made tests ignore the copy of gpt2 in Decision Transformer
* Added module output to modelling decision transformer
* removed copied gpt2 model from list of transformers models
* Updated tests and created __init__ file for new test location
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unneeded summary type from config file
* Fixed copies
* Updated pretrained config map to refer to hopper-medium checkpoint
* done (#16340)
* Added Decision transformer to model docs
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add type annotations for Rembert/Splinter and copies (#16338)
* undo black autoformat
* minor fix to rembert forward with default
* make fix-copies, make quality
* Adding types to template model
* Removing List from the template types
* Remove `Optional` from a couple of types that don't accept `None`
Co-authored-by: matt <rocketknight1@gmail.com>
* [Bug template] Shift responsibilities for long-range (#16344)
* Fix code repetition in serialization guide (#16346)
* Adopt framework-specific blocks for content (#16342)
* ✨ refactor code samples with framework-specific blocks
* ✨ update training.mdx
* 🖍 apply feedback
* Updates the default branch from master to main (#16326)
* Updates the default branch from master to main
* Links from `master` to `main`
* Typo
* Update examples/flax/README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Updated model with custom docstring example
* Created the Decision Transformer Modle
* updating tests, copy to other machine
* Added last hidden size to Decision Transformer modelling outputs
* Removed copy of original DT file
* made a temporary change to gpt2 to have it conform with the Decision Transformer version
* Updated tests
* Ignoring a file used to test the DT model
* added comments to config file
* added comments and argument descriptions to decision transformer file
* Updated doc
* Ran "make style"
* Remove old model imports
* Removed unused imports, cleaned up init file
* Update docs/source/model_doc/decision_transformer.mdx
added my username
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Reverted changes made to gpt2
* Removed datasets submodule
* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states
* Added support for return of hidden states, attentions and return dict of gpt2 model.
* Updated tests to include many of the ModelTesterMixin tests.
The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes
* Added missing line to the end of gpt2 file
* Added an integration test for the Decision Transformer
Test performs and autoregressive evaluation for two time steps
* Set done and info to _ to fix failing test
* Updated integration test to be deterministic and check expected outputs
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unnecessary config options
* Cleaned up commented code and old comments.
* Cleaned up commented code.
* Changed DecisionTransformer to Decision Transformer
* Added Decision Transformer to the main README file
* Added copy of GTP2 called DecisionTranformerGPT2Model
* isorted imports
* isorted imports
* Added model to non-English README files
* Ran make fix-copies and corrected some cases.
* Updated index file to include Decision Transformer
* Added gpt2 model as copy inside the Decision Transformer model file
* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS
* Deleted redundant checkpoint files (I don't know how these got committed)
* Removed testing files. (These should have never been committed)
* Removed accidentally committed files
* Moved the Decision Transformer test to its own directory
* Moved DecisionTransformOutput to modeling_decision_transformer
* Moved the example usage to research project and cleaned comments
* Made tests ignore the copy of gpt2 in Decision Transformer
* Added module output to modelling decision transformer
* removed copied gpt2 model from list of transformers models
* Updated tests and created __init__ file for new test location
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unneeded summary type from config file
* Fixed copies
* Updated pretrained config map to refer to hopper-medium checkpoint
* Added Decision transformer to model docs
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Updated model with custom docstring example
* Updated copies, config auto, and readme files.
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Tegzes <48134725+Tegzes@users.noreply.github.com>
Co-authored-by: Adam Montgomerie <adam@avanssion.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Clémentine Fourrier <22726840+clefourrier@users.noreply.github.com>
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Jacob Dineen <54680234+jacobdineen@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Split file_utils in several submodules
* Fixes
* Add back more objects
* More fixes
* Who exactly decided to import that from there?
* Second suggestion to code with code review
* Revert wront move
* Fix imports
* Adapt all imports
* Adapt all imports everywhere
* Revert this import, will fix in a separate commit
* maskformer
* conflicts
* conflicts
* minor fixes
* feature extractor test fix
refactor MaskFormerLoss following conversation
MaskFormer related types should not trigger a module time import error
missed one
removed all the types that are not used
update config mapping
minor updates in the doc
resolved conversation that doesn't need a discussion
minor changes
resolved conversations
fixed DetrDecoder
* minor changes
minor changes
fixed mdx file
test feature_extractor return types
functional losses -> classes
removed the return type test for the feature extractor
minor changes + style + quality
* conflicts?
* rebase master
* readme
* added missing files
* deleded poolformers test that where in the wrong palce
* CI
* minor changes
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* resolved conversations
* minor changes
* conversations
[Unispeech] Fix slow tests (#15818)
* remove soundfile old way of loading audio
* Adapt slow test
[Barthez Tokenizer] Fix saving (#15815)
[TFXLNet] Correct tf xlnet generate (#15822)
* [TFXLNet] Correct tf xlnet
* adapt test comment
Fix the push run (#15807)
Fix semantic segmentation pipeline test (#15826)
Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776)
Add model specific output classes to PoolFormer model docs (#15746)
* Added model specific output classes to poolformer docs
* Fixed Segformer typo in Poolformer docs
Adding the option to return_timestamps on pure CTC ASR models. (#15792)
* Adding the option to return_timestamps on pure CTC ASR models.
* Remove `math.prod` which was introduced in Python 3.8
* int are not floats.
* Reworking the PR to support "char" vs "word" output.
* Fixup!
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Quality.
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824)
Fix tf.concatenate + test past_key_values for TF models (#15774)
* fix wrong method name tf.concatenate
* add tests related to causal LM / decoder
* make style and quality
* clean-up
* Fix TFBertModel's extended_attention_mask when past_key_values is provided
* Fix tests
* fix copies
* More tf.int8 -> tf.int32 in TF test template
* clean-up
* Update TF test template
* revert the previous commit + update the TF test template
* Fix TF template extended_attention_mask when past_key_values is provided
* Fix some styles manually
* clean-up
* Fix ValueError: too many values to unpack in the test
* Fix more: too many values to unpack in the test
* Add a comment for extended_attention_mask when there is past_key_values
* Fix TFElectra extended_attention_mask when past_key_values is provided
* Add tests to other TF models
* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder
* Fix not passing training arg to lm_head in TFRobertaForCausalLM
* Fix tests (with past) for TF Roberta
* add testing for pask_key_values for TFElectra model
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
[examples/summarization and translation] fix readme (#15833)
Add ONNX Runtime quantization for text classification notebook (#15817)
Re-enable doctests for the quicktour (#15828)
* Re-enable doctests for the quicktour
* Re-enable doctests for task_summary (#15830)
* Remove &
Framework split model report (#15825)
Add TFConvNextModel (#15750)
* feat: initial implementation of convnext in tensorflow.
* fix: sample code for the classification model.
* chore: added checked for from the classification model.
* chore: set bias initializer in the classification head.
* chore: updated license terms.
* chore: removed ununsed imports
* feat: enabled argument during using drop_path.
* chore: replaced tf.identity with layers.Activation(linear).
* chore: edited default checkpoint.
* fix: minor bugs in the initializations.
* partial-fix: tf model errors for loading pretrained pt weights.
* partial-fix: call method updated
* partial-fix: cross loading of weights (4x3 variables to be matched)
* chore: removed unneeded comment.
* removed playground.py
* rebasing
* rebasing and removing playground.py.
* fix: renaming TFConvNextStage conv and layer norm layers
* chore: added initializers and other minor additions.
* chore: added initializers and other minor additions.
* add: tests for convnext.
* fix: integration tester class.
* fix: issues mentioned in pr feedback (round 1).
* fix: how output_hidden_states arg is propoagated inside the network.
* feat: handling of arg for pure cnn models.
* chore: added a note on equal contribution in model docs.
* rebasing
* rebasing and removing playground.py.
* feat: encapsulation for the convnext trunk.
* Fix variable naming; Test-related corrections; Run make fixup
* chore: added Joao as a contributor to convnext.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: corrected copyright year and added comment on NHWC.
* chore: fixed the black version and ran formatting.
* chore: ran make style.
* chore: removed from_pt argument from test, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* fix: tests in the convnext subclass, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: moved convnext test to the correct location
* fix: locations for the test file of convnext.
* fix: convnext tests.
* chore: applied sgugger's suggestion for dealing w/ output_attentions.
* chore: added comments.
* chore: applied updated quality enviornment style.
* chore: applied formatting with quality enviornment.
* chore: revert to the previous tests/test_modeling_common.py.
* chore: revert to the original test_modeling_common.py
* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py
* fix: tests for convnext.
* chore: removed output_attentions argument from convnext config.
* chore: revert to the earlier tf utils.
* fix: output shapes of the hidden states
* chore: removed unnecessary comment
* chore: reverting to the right test_modeling_tf_common.py.
* Styling nits
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* minor changes
* doc fix in feature extractor
* doc
* typose
* removed detr logic from config
* removed detr logic from config
* removed num_labels
* small fix in the config
* auxilary -> auxiliary
* make style
* some test is failing
* fix a weird char in config prevending doc-builder
* retry to fix the doc-builder issue
* make style
* new try to fix the doc builder
* CI
* change weights to facebook
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* Add data2vec model cloned from roberta
* Add checkpoint conversion script
* Fix copies
* Update docs
* Add checkpoint conversion script
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update documentation
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* add inputs to logits to data2vec'
* correct autio models
* correct config auto
* correct tok auto
* Update utils/tests_fetcher.py
* delete unnecessary files
* delete unnecessary files
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix copies
* Update docs
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update documentation
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* add inputs to logits to data2vec'
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* correct autio models
* correct config auto
* correct tok auto
* delete unnecessary files
* delete unnecessary files
* Update utils/tests_fetcher.py
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Move data2vec tests to new structure
* Fix test imports for text tests
* Remove fairseq files
* Change paper link to arxiv
* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.
* Update text model checkpoint to be facebook/data2vec-text-base
* Add 'Copy from' statements and update paper links and docs
* fix copy from statements
* improve copied from
* correct more copied from statements
* finish copied from stuff
* make style
* add model to README
* add to master
Co-authored-by: Eduardo Gonzalez Ponferrada <eduardo@ferrumhealth.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* rebase
* Delete shift tokens func
* downsample decoder input seq len for init
* correct attention mask
* add tests
* pt flax cross test
* make fixup
* init file for import
* change pt-flax cross test threshold
* pt-flax test logits only
* move tests
* make repo-consistency
* consistent indentation
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* First commit
* Add conversion script
* Make conversion script work for base model
* More improvements
* Update conversion script, works for vqa
* Add indexing argument to meshgrid
* Make conversion script work for ViltForPreTraining
* Add ViltForPreTraining to docs
* Fix device issue
* Add processor
* Add MinMaxResize to feature extractor
* Implement call method of ViltProcessor
* Fix tests
* Add integration test
* Add loss calculation for VQA
* Improve tests
* Improve some more tests
* Debug tests
* Small improvements
* Add support for attention_mask
* Remove mask_it
* Add pixel_mask
* Add tests for ViltFeatureExtractor
* Improve tests
* Add ViltForNaturalLanguageVisualReasoning
* Add ViltForNaturalLanguageVisualReasoning to conversion script
* Minor fixes
* Add support for image_embeds, update docstrings to markdown
* Update docs to markdown
* Improve conversion script
* Rename ViltForPreTraining to ViltForMaskedLM
* Improve conversion script
* Convert docstrings to markdown
* Fix code example of retrieval model
* Properly convert masked language model
* Add integration test for nlvr
* Fix code quality
* Apply suggestions from code review
* Add copied from statements
* Fix pretrained_config_archive_map
* Fix docs
* Add model to README
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply more suggestions from code review
* Make code more readable
* Add ViltForNaturalLanguageVisualReasoning to the tests
* Rename ViltForVisualQuestionAnswering to ViltForQuestionAnswering
* Replace pixel_values_2 by single tensor
* Add hidden_states and attentions
* Fix one more test
* Fix all tests
* Update year
* Fix rebase issues
* Fix another rebase issue
* Remove ViltForPreTraining from auto mapping
* Rename ViltForImageRetrievalTextRetrieval to ViltForImageAndTextRetrieval
* Make it possible to use BertTokenizerFast in the processor
* Use BertTokenizerFast by default
* Rename ViltForNaturalLanguageVisualReasoning, define custom model output
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Start the work on TFVisionEncoderDecoderModel
* Expose TFVisionEncoderDecoderModel
* fix import
* Add modeling_tf_vision_encoder_decoder to _ignore_modules in get_model_modules()
* reorder
* Apply the fix for checkpoint loading as in #14016
* remove attention_mask + fix VISION_DUMMY_INPUTS
* A minimal change to make TF generate() work for vision models as encoder in encoder-decoder setting
* fix wrong condition: shape_list(input_ids) == 2
* add tests
* use personal TFViTModel checkpoint (for now)
* Add equivalence tests + projection layer
* style
* make sure projection layer can run
* Add examples
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Clean comments (need to work on TODOs for PyTorch models)
* Remove TF -> PT in check_pt_tf_equivalence for TFVisionEncoderDecoderModel
* fixes
* Revert changes in PT code.
* Update tests/test_modeling_tf_vision_encoder_decoder.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add test_inference_coco_en for TF test
* fix quality
* fix name
* build doc
* add main_input_name
* Fix ckpt name in test
* fix diff between master and this PR
* fix doc
* fix style and quality
* fix missing doc
* fix labels handling
* Delete auto.rst
* Add the changes done in #14016
* fix prefix
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make style
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Convert docstrings of all configurations and tokenizers
* Processors and fixes
* Last modeling files and fixes to models
* Pipeline modules
* Utils files
* Data submodule
* All the other files
* Style
* Missing examples
* Style again
* Fix copies
* Say bye bye to rst docstrings forever
* First draft
* Style and remove mlm
* Make forward pass work
* More improvements
* More improvements
* Fix bug
* More improvements
* More improvements
* Add PerceiverTokenizer first draft
* Improve conversion script
* More improvements
* Make conversion script work for the encoder
* Make conversion script work with local pickle files
* Style & quality, fix-copies
* Add dummy input to conversion script
* Add absolute position embeddings to TextPreProcessor
* Make forward pass of encoder work
* More improvements
* Move text preprocessor to separate script
* More improvements
* More improvements
* Add post processor
* Make MLM model work
* Style
* Add PerceiverForMaskedLM
* Add PerceiverImagePreprocessor
* Make style
* Make PerceiverForImageClassification work
* More improvements
* More improvements
* Use tokenizer in conversion script
* Use PerceiverForMaskedLM in conversion script
* Define custom PerceiverModelOutput
* Improve PerceiverAttention to make it work for both MLM and image classification
* More improvements
* More improvements
* More improvements to the conversion script
* Make conversion script work for both MLM and image classification
* Add PerceiverFeatureExtractor
* More improvements
* Style and quality
* Add center cropping
* Fix bug
* Small fix
* Add print statement
* Fix bug in image preprocessor
* Fix bug with conversion script
* Make output position embeddings an nn.Parameter layer instead of nn.Embedding
* Comment out print statements
* Add position encoding classes
* More improvements
* Use position_encoding_kwargs
* Add PerceiverForImageClassificationFourier
* Make style & quality
* Add PerceiverForImageClassificationConvProcessing
* Style & quality
* Add flow model
* Move processors to modeling file
* Make position encodings modular
* Make basic decoder use modular position encodings
* Add PerceiverForOpticalFlow to conversion script
* Add AudioPreprocessor
* Make it possible for the basic decoder to use Fourier position embeddings
* Add PerceiverForMultimodalAutoencoding
* Improve model for optical flow
* Improve _build_network_inputs method
* Add print statement
* Fix device issue
* Fix device of Fourier embeddings
* Add print statements for debugging
* Add another print statement
* Add another print statement
* Add another print statement
* Add another print statement
* Improve PerceiverAudioPreprocessor
* Improve conversion script for multimodal modal
* More improvements
* More improvements
* Improve multimodal model
* Make forward pass multimodal model work
* More improvements
* Improve tests
* Fix some more tests
* Add output dataclasses
* Make more tests pass
* Add print statements for debuggin
* Add tests for image classification
* Add PerceiverClassifierOutput
* More improvements
* Make more tests pass for the optical flow model
* Make style & quality
* Small improvements
* Don't support training for optical flow model for now
* Fix _prepare_for_class for tests
* Make more tests pass, add some docs
* Add multimodal model to tests
* Minor fixes
* Fix tests
* Improve conversion script
* Make fixup
* Remove pos_dim argument
* Fix device issue
* Potential fix for OOM
* Revert previous commit
* Fix test_initialization
* Add print statements for debugging
* Fix print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Remove need for output_shape
* Comment out output_shape
* Remove unnecessary code
* Improve docs
* Fix make fixup
* Remove PerceiverTextProcessor from init
* Improve docs
* Small improvement
* Apply first batch of suggestions from code review
* Apply more suggestions from code review
* Update docstrings
* Define dicts beforehand for readability
* Rename task to architecture in conversion script, include PerceiverModel in tests
* Add print statements for debugging
* Fix tests on GPU
* Remove preprocessors, postprocessors and decoders from main init
* Add integration test
* Fix docs
* Replace einops by torch
* Update for new docs frontend
* Rename PerceiverForImageClassification
* Improve docs
* Improve docs
* Improve docs of PerceiverModel
* Fix some more tests
* Improve center_crop
* Add PerceiverForSequenceClassification
* Small improvements
* Fix tests
* Add integration test for optical flow model
* Clean up
* Add tests for tokenizer
* Fix tokenizer by adding special tokens properly
* Fix CI
* implement MLukeTokenizer and LukeForMaskedLM
* update tests
* update docs
* add LukeForMaskedLM to check_repo.py
* update README
* fix test and specify the entity pad id in tokenization_(m)luke
* fix EntityPredictionHeadTransform
* Add first draft
* Make forward pass work
* Improve conversion script
* Add notebook that checks if it works
* Add BeitForSemanticSegmentation to the tests
* More improvements
* Make BeitForSemanticSegmentation consistent with Segformer
* Small bug fix
* Add BeitForSemanticSegmentation to docs
* Make sure model doesn't output hidden states when the user doesn't want to
* Make it possible to convert the large model
* Fix issue
* Fix conversion script for large model
* Add auxiliary_head option to semantic segmentation model
* Apply suggestions from @sgugger's review
* Apply suggestions from code review
* Fix failing test
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
* First draft
* Make style & quality
* Improve conversion script
* Add print statement to see actual slice
* Make absolute tolerance smaller
* Fix image classification models
* Add post_process_semantic method
* Disable padding
* Improve conversion script
* Rename to ForSemanticSegmentation, add integration test, remove post_process methods
* Improve docs
* Fix code quality
* Fix feature extractor tests
* Fix tests for image classification model
* Delete file
* Add is_torch_available to feature extractor
* Improve documentation of feature extractor methods
* Apply suggestions from @sgugger's code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply some more suggestions of code review
* Rebase with master
* Fix rebase issues
* Make sure model only outputs hidden states when the user wants to
* Apply suggestions from code review
* Add pad method
* Support padding of 2d images
* Add print statement
* Add print statement
* Move padding method to SegformerFeatureExtractor
* Fix issue
* Add casting of segmentation maps
* Add test for padding
* Add small note about padding
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add cross attentions to TFGPT2Model
* Add TFEncoderDecoderModel
* Add TFBaseModelOutputWithPoolingAndCrossAttentions
* Add cross attentions to TFBertModel
* Fix past or past_key_values argument issue
* Fix generation
* Fix save and load
* Add some checks and comments
* Clean the code that deals with past keys/values
* Add kwargs to processing_inputs
* Add serving_output to TFEncoderDecoderModel
* Some cleaning + fix use_cache value issue
* Fix tests + add bert2bert/bert2gpt2 tests
* Fix more tests
* Ignore crossattention.bias when loading GPT2 weights into TFGPT2
* Fix return_dict_in_generate in tf generation
* Fix is_token_logit_eos_token bug in tf generation
* Finalize the tests after fixing some bugs
* Fix another is_token_logit_eos_token bug in tf generation
* Add/Update docs
* Add TFBertEncoderDecoderModelTest
* Clean test script
* Add TFEncoderDecoderModel to the library
* Add cross attentions to TFRobertaModel
* Add TFRobertaEncoderDecoderModelTest
* make style
* Change the way of position_ids computation
* bug fix
* Fix copies in tf_albert
* Remove some copied from and apply some fix-copies
* Remove some copied
* Add cross attentions to some other TF models
* Remove encoder_hidden_states from TFLayoutLMModel.call for now
* Make style
* Fix TFRemBertForCausalLM
* Revert the change to longformer + Remove copies
* Revert the change to albert and convbert + Remove copies
* make quality
* make style
* Add TFRembertEncoderDecoderModelTest
* make quality and fix-copies
* test TFRobertaForCausalLM
* Fixes for failed tests
* Fixes for failed tests
* fix more tests
* Fixes for failed tests
* Fix Auto mapping order
* Fix TFRemBertEncoder return value
* fix tf_rembert
* Check copies are OK
* Fix missing TFBaseModelOutputWithPastAndCrossAttentions is not defined
* Add TFEncoderDecoderModelSaveLoadTests
* fix tf weight loading
* check the change of use_cache
* Revert the change
* Add missing test_for_causal_lm for TFRobertaModelTest
* Try cleaning past
* fix _reorder_cache
* Revert some files to original versions
* Keep as many copies as possible
* Apply suggested changes - Use raise ValueError instead of assert
* Move import to top
* Fix wrong require_torch
* Replace more assert by raise ValueError
* Add test_pt_tf_model_equivalence (the test won't pass for now)
* add test for loading/saving
* finish
* finish
* Remove test_pt_tf_model_equivalence
* Update tf modeling template
* Remove pooling, added in the prev. commit, from MainLayer
* Update tf modeling test template
* Move inputs["use_cache"] = False to modeling_tf_utils.py
* Fix torch.Tensor in the comment
* fix use_cache
* Fix missing use_cache in ElectraConfig
* Add a note to from_pretrained
* Fix style
* Change test_encoder_decoder_save_load_from_encoder_decoder_from_pt
* Fix TFMLP (in TFGPT2) activation issue
* Fix None past_key_values value in serving_output
* Don't call get_encoderdecoder_model in TFEncoderDecoderModelTest.test_configuration_tie until we have a TF checkpoint on Hub
* Apply review suggestions - style for cross_attns in serving_output
* Apply review suggestions - change assert + docstrings
* break the error message to respect the char limit
* deprecate the argument past
* fix docstring style
* Update the encoder-decoder rst file
* fix Unknown interpreted text role "method"
* fix typo
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* beit-flax
* updated FLAX_BEIT_MLM_DOCSTRING
* removed bool_masked_pos from classification
* updated Copyright
* code refactoring: x -> embeddings
* updated test: rm from_pt
* Update docs/source/model_doc/beit.rst
* model code dtype updates and
other changes according to review
* relative_position_bias
revert back to pytorch design
* Add the audio classification pipeline
* Remove autoconfig exception
* Mark ffmpeg test as slow
* Rearrange pipeline tests
* Add small test
* Replace asserts with ValueError
* Add hubert classifier + tests
* Add hubert classifier + tests
* Dummies for all classification tests
* Wav2Vec2 classifier + ER test
* Fix hubert integration tests
* Add hubert IC
* Pass tests for all classification tasks on Hubert
* Pass all tests + copies
* Move models to the SUPERB org
* make flax gpt2 working with cross attention
* Remove encoder->decoder projection layer
* A draft (incomplete) for FlaxEncoderDecoderModel
* Add the method from_encoder_decoder_pretrained + the docstrings
* Fix the mistakes of using EncoderDecoderModel
* Fix style
* Add FlaxEncoderDecoderModel to the library
* Fix cyclic imports
* Add FlaxEncoderDecoderModel to modeling_flax_auto.py
* Remove question comments
* add tests for FlaxEncoderDecoderModel
* add flax_encoder_decoder to the lists of ignored entries in check_repo.py
* fix missing required positional arguments
* Remove **kwargs when creating FlaxEncoderDecoderModel in from_encoder_decoder_pretrained()
Also fix generation eos/pad tokens issue
* Fix: Use sequences from the generated_output
* Change a check from assert to raise ValueError
* Fix examples and token ids issues
* Fix missing all_cross_attentions when outputting tuple in modeling_gpt2
* Remove the changes in configuration docstrings.
* allow for bert 2 gpt2
* make fix-copies
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Change remaining examples to bert2gpt2
* Change the test to Bert2GPT2
* Fix examples
* Fix import
* Fix unpack bug
* Rename to FlaxEncoderDecoderModelTest and change the test to bert2gpt2
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix: NotImplentedError -> NotImplementedError
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* up
* finalize
Co-authored-by: ydshieh <ydshieh@user.noreply>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Initial work
* All auto models
* All tf auto models
* All flax auto models
* Tokenizers
* Add feature extractors
* Fix typos
* Fix other typo
* Use the right config
* Remove old mapping names and update logic in AutoTokenizer
* Update check_table
* Fix copies and check_repo script
* Fix last test
* Add back name
* clean up
* Update template
* Update template
* Forgot a )
* Use alternative to fixup
* Fix TF model template
* Address review comments
* Address review comments
* Style
* First pass
* Make conversion script work
* Improve conversion script
* Fix bug, conversion script working
* Improve conversion script, implement BEiTFeatureExtractor
* Make conversion script work based on URL
* Improve conversion script
* Add tests, add documentation
* Fix bug in conversion script
* Fix another bug
* Add support for converting masked image modeling model
* Add support for converting masked image modeling
* Fix bug
* Add print statement for debugging
* Fix another bug
* Make conversion script finally work for masked image modeling models
* Move id2label for datasets to JSON files on the hub
* Make sure id's are read in as integers
* Add integration tests
* Make style & quality
* Fix test, add BEiT to README
* Apply suggestions from @sgugger's review
* Apply suggestions from code review
* Make quality
* Replace nielsr by microsoft in tests, add docs
* Rename BEiT to Beit
* Minor fix
* Fix docs of BeitForMaskedImageModeling
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [WIP] Add TFWav2Vec2Model
Work in progress for adding a tensorflow version of Wav2Vec2
* feedback changes
* small fix
* Test Feedback Round 1
* Add SpecAugment and CTC Loss
* correct spec augment mask creation
* docstring and correct copyright
* correct bugs
* remove bogus file
* finish tests correction
* del unnecessary layers
* Update src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* make style
* correct final bug
* Feedback Changes
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Squash all commits of modeling_detr_v7 branch into one
* Improve docs
* Fix tests
* Style
* Improve docs some more and fix most tests
* Fix slow tests of ViT, DeiT and DETR
* Improve replacement of batch norm
* Restructure timm backbone forward
* Make DetrForSegmentation support any timm backbone
* Fix name of output
* Address most comments by @LysandreJik
* Give better names for variables
* Conditional imports + timm in setup.py
* Address additional comments by @sgugger
* Make style, add require_timm and require_vision to testsé
* Remove train_backbone attribute of DetrConfig, add methods to freeze/unfreeze backbone
* Add png files to fixtures
* Fix type hint
* Add timm to workflows
* Add `BatchNorm2d` to the weight initialization
* Fix retain_grad test
* Replace model checkpoints by Facebook namespace
* Fix name of checkpoint in test
* Add user-friendly message when scipy is not available
* Address most comments by @patrickvonplaten
* Remove return_intermediate_layers attribute of DetrConfig and simplify Joiner
* Better initialization
* Scipy is necessary to get sklearn metrics
* Rename TimmBackbone to DetrTimmConvEncoder and rename DetrJoiner to DetrConvModel
* Make style
* Improve docs and add 2 community notebooks
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
* Make quality scripts work when one backend is missing.
* Check env variable is properly set
* Add default
* With print statements
* Fix typo
* Set env variable
* Remove debug code
* Rebase with master
* Minor bug fix in docs
* Copy files from adding_luke_v2 and improve docs
* change the default value of use_entity_aware_attention to True
* remove word_hidden_states
* fix head models
* fix tests
* fix the conversion script
* add integration tests for the pretrained large model
* improve docstring
* Improve docs, make style
* fix _init_weights for pytorch 1.8
* improve docs
* fix tokenizer to construct entity sequence with [MASK] entity when entities=None
* Make fix-copies
* Make style & quality
* Bug fixes
* Add LukeTokenizer to init
* Address most comments by @patil-suraj and @LysandreJik
* rename _compute_extended_attention_mask to get_extended_attention_mask
* add comments to LukeSelfAttention
* fix the documentation of the tokenizer
* address comments by @patil-suraj, @LysandreJik, and @sgugger
* improve docs
* Make style, quality and fix-copies
* Improve docs
* fix docs
* add "entity_span_classification" task
* update example code for LukeForEntitySpanClassification
* improve docs
* improve docs
* improve the code example in luke.rst
* rename the classification layer in LukeForEntityClassification from typing to classifier
* add bias to the classifier in LukeForEntitySpanClassification
* update docs to use fine-tuned hub models in code examples of the head models
* update the example sentences
* Make style & quality
* Add require_torch to tokenizer tests
* Add require_torch to tokenizer tests
* Address comments by @sgugger and add community notebooks
* Make fix-copies
Co-authored-by: Ikuya Yamada <ikuya@ikuya.net>
* Create modeling_tf_dpr.py
* Add TFDPR
* Add back TFPegasus, TFMarian, TFMBart, TFBlenderBot
last commit accidentally deleted these 4 lines, so I recover them back
* Add TFDPR
* Add TFDPR
* clean up some comments, add TF input-style doc string
* Add TFDPR
* Make return_dict=False as default
* Fix return_dict bug (in .from_pretrained)
* Add get_input_embeddings()
* Create test_modeling_tf_dpr.py
The current version is already passed all 27 tests!
Please see the test run at :
https://colab.research.google.com/drive/1czS_m9zy5k-iSJbzA_DP1k1xAAC_sdkf?usp=sharing
* fix quality
* delete init weights
* run fix copies
* fix repo consis
* del config_class, load_tf_weights
They shoud be 'pytorch only'
* add config_class back
after removing it, test failed ... so totally only removing "use_tf_weights = None" on Lysandre suggestion
* newline after .. note::
* import tf, np (Necessary for ModelIntegrationTest)
* slow_test from_pretrained with from_pt=True
At the moment we don't have TF weights (since we don't have official official TF model)
Previously, I did not run slow test, so I missed this bug
* Add simple TFDPRModelIntegrationTest
Note that this is just a test that TF and Pytorch gives approx. the same output.
However, I could not test with the official DPR repo's output yet
* upload correct tf model
* remove position_ids as missing keys
* create modeling_tf_rag
* add tests for tf
* add tf tests
* revert wrong pt commit
* further refactor
* further refactor
* refactor
* Update modeling_tf_rag.py
- input_processing
- fix prepare_input_for_generation (mostly fix generate bug)
- bring back from_pretrained hack in order to test generate
* delete colab pieces of code
* Show case of greedy "generate"
Temporarily change from beam_search test to greedy_search test to show case that TF and PT do get equivalent output.
* cosmetic update
* correct typos
* update
* push some progress
* make easy check
* fix rag save from pretrained
* Update src/transformers/modeling_tf_utils.py
* remove commented out lines
* delete unnecessary lines
* add simple test case for nq_checkpoint
Add nq_checkpoint test to show that current version without hack still fails
* temporarily put ugly hack back again
* Add TFRagSequenceForGeneration!!
* __init__.py , import TFRagSequenceForGeneration
* Add TFRagSequence tests!
* rag init.py - add TFRagSequenceForGeneration
* fix from_pretrained
* fix prepare_inputs_for_generation
* Beam search for RagToken!
* minor clean up
* add tf.cast in TFRagModel
* More tf.cast
* Add all remaining tests (still have issues)
* delete all T5 related
* make style
* fix load weight prefix
* fix bart
* fix return_dict for tf_rag
make all tests pass .. Hooray
* fix some tests
* fix code quality
* fix qualtiy check
* finish tests tf rag
* add tf rag to docs
* remove TFT5 from docstring
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* remove TFT5 from docstring
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Delete outdated comments
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* improve doc strings
* add generative model classes
* fix adjust token logic
* refactor generate for TFRag
* using shape_list, not _get_shape
Co-authored-by: Julien Plu <plu.julien@gmail.com>
* axis=[1]->axis=1
* delete NEED_HELP comment
* improve readability
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* improve readability
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* improve readability
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Indicating model is in a developing state in docstrings
As suggested by Julien
* small last changes
* apply sylvains suggestions
* finish tf rag
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: patrickvonplaten <patrick@huggingface.co>
Co-authored-by: Julien Plu <plu.julien@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Main init work
* Add version
* Change from absolute to relative imports
* Fix imports
* One more typo
* More typos
* Styling
* Make quality script pass
* Add necessary replace in template
* Fix typos
* Spaces are ignored in replace for some reason
* Forgot one models.
* Fixes for import
Co-authored-by: LysandreJik <lysandre.debut@reseau.eseo.fr>
* Add documentation
* Styling
Co-authored-by: LysandreJik <lysandre.debut@reseau.eseo.fr>
* first commit
* change phobert to phoBERT as per author in overview
* v3 and v4 both runs on same code hence there is no need to differentiate them
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* create model
* add integration
* save current state
* make integration tests pass
* add one more test
* add explanation to tests
* remove from bart
* add padding
* remove unnecessary test
* make all tests pass
* re-add cookie cutter tests
* finish PyTorch
* fix attention test
* Update tests/test_modeling_common.py
* revert change
* remove unused file
* add string to doc
* save intermediate
* make tf integration tests pass
* finish tf
* fix doc
* fix docs again
* add led to doctree
* add to auto tokenizer
* added tips for led
* make style
* apply jplus statements
* correct tf longformer
* apply lysandres suggestions
* apply sylvains suggestions
* Apply suggestions from code review
* remove make on the fly linear embedding
* start refactor
* big first refactor
* save intermediate
* save intermediat
* correct mask issue
* save tests
* refactor padding masks
* make all tests pass
* further refactor
* make pegasus test pass
* fix bool if
* fix leftover tests
* continue
* bart renaming
* delete torchscript test hack
* fix imports in tests
* correct shift
* fix docs and repo cons
* re-add fix for FSTM
* typo in test
* fix typo
* fix another typo
* continue
* hot fix 2 for tf
* small fixes
* refactor types linting
* continue
* finish refactor
* fix import in tests
* better bart names
* further refactor and add test
* delete hack
* apply sylvains and lysandres commens
* small perf improv
* further perf improv
* improv perf
* fix typo
* make style
* small perf improv
* Put models in subfolders
* Styling
* Fix imports in tests
* More fixes in test imports
* Sneaky hidden imports
* Fix imports in doc files
* More sneaky imports
* Finish fixing tests
* Fix examples
* Fix path for copies
* More fixes for examples
* Fix dummy files
* More fixes for example
* More model import fixes
* Is this why you're unhappy GitHub?
* Fix imports in conver command
* Create modeling_tf_dpr.py
* Add TFDPR
* Add back TFPegasus, TFMarian, TFMBart, TFBlenderBot
last commit accidentally deleted these 4 lines, so I recover them back
* Add TFDPR
* Add TFDPR
* clean up some comments, add TF input-style doc string
* Add TFDPR
* Make return_dict=False as default
* Fix return_dict bug (in .from_pretrained)
* Add get_input_embeddings()
* Create test_modeling_tf_dpr.py
The current version is already passed all 27 tests!
Please see the test run at :
https://colab.research.google.com/drive/1czS_m9zy5k-iSJbzA_DP1k1xAAC_sdkf?usp=sharing
* fix quality
* delete init weights
* run fix copies
* fix repo consis
* del config_class, load_tf_weights
They shoud be 'pytorch only'
* add config_class back
after removing it, test failed ... so totally only removing "use_tf_weights = None" on Lysandre suggestion
* newline after .. note::
* import tf, np (Necessary for ModelIntegrationTest)
* slow_test from_pretrained with from_pt=True
At the moment we don't have TF weights (since we don't have official official TF model)
Previously, I did not run slow test, so I missed this bug
* Add simple TFDPRModelIntegrationTest
Note that this is just a test that TF and Pytorch gives approx. the same output.
However, I could not test with the official DPR repo's output yet
* upload correct tf model
* remove position_ids as missing keys
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: patrickvonplaten <patrick@huggingface.co>
* Copy code from Bert to Roberta and add safeguard script
* Fix docstring
* Comment code
* Formatting
* Update src/transformers/modeling_roberta.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Add test and fix bugs
* Fix style and make new comand
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Initial model
* Fix upsampling
* Add special cls token id and test
* Formatting
* Test and fist FunnelTokenizerFast
* Common tests
* Fix the check_repo script and document Funnel
* Doc fixes
* Add all models
* Write doc
* Fix test
* Initial model
* Fix upsampling
* Add special cls token id and test
* Formatting
* Test and fist FunnelTokenizerFast
* Common tests
* Fix the check_repo script and document Funnel
* Doc fixes
* Add all models
* Write doc
* Fix test
* Fix copyright
* Forgot some layers can be repeated
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/modeling_funnel.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Address review comments
* Update src/transformers/modeling_funnel.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Address review comments
* Update src/transformers/modeling_funnel.py
Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
* Slow integration test
* Make small integration test
* Formatting
* Add checkpoint and separate classification head
* Formatting
* Expand list, fix link and add in pretrained models
* Styling
* Add the model in all summaries
* Typo fixes
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
* Add a script to check all models are tested and documented
* Apply suggestions from code review
Co-authored-by: Kevin Canwen Xu <canwenxu@126.com>
* Address comments
Co-authored-by: Kevin Canwen Xu <canwenxu@126.com>