mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Check all models are in an auto class (#8425)
This commit is contained in:
parent
ef032ddd1e
commit
a39218b75b
@ -31,6 +31,7 @@ from .configuration_auto import (
|
||||
FunnelConfig,
|
||||
GPT2Config,
|
||||
LongformerConfig,
|
||||
LxmertConfig,
|
||||
MobileBertConfig,
|
||||
OpenAIGPTConfig,
|
||||
RobertaConfig,
|
||||
@ -113,6 +114,7 @@ from .modeling_tf_funnel import (
|
||||
)
|
||||
from .modeling_tf_gpt2 import TFGPT2LMHeadModel, TFGPT2Model
|
||||
from .modeling_tf_longformer import TFLongformerForMaskedLM, TFLongformerForQuestionAnswering, TFLongformerModel
|
||||
from .modeling_tf_lxmert import TFLxmertForPreTraining, TFLxmertModel
|
||||
from .modeling_tf_marian import TFMarianMTModel
|
||||
from .modeling_tf_mbart import TFMBartForConditionalGeneration
|
||||
from .modeling_tf_mobilebert import (
|
||||
@ -168,6 +170,7 @@ logger = logging.get_logger(__name__)
|
||||
|
||||
TF_MODEL_MAPPING = OrderedDict(
|
||||
[
|
||||
(LxmertConfig, TFLxmertModel),
|
||||
(T5Config, TFT5Model),
|
||||
(DistilBertConfig, TFDistilBertModel),
|
||||
(AlbertConfig, TFAlbertModel),
|
||||
@ -192,6 +195,7 @@ TF_MODEL_MAPPING = OrderedDict(
|
||||
|
||||
TF_MODEL_FOR_PRETRAINING_MAPPING = OrderedDict(
|
||||
[
|
||||
(LxmertConfig, TFLxmertForPreTraining),
|
||||
(T5Config, TFT5ForConditionalGeneration),
|
||||
(DistilBertConfig, TFDistilBertForMaskedLM),
|
||||
(AlbertConfig, TFAlbertForPreTraining),
|
||||
|
@ -70,6 +70,34 @@ MODEL_NAME_TO_DOC_FILE = {
|
||||
"marian": "marian.rst",
|
||||
}
|
||||
|
||||
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
|
||||
# should **not** be the rule.
|
||||
IGNORE_NON_AUTO_CONFIGURED = [
|
||||
"DPRContextEncoder",
|
||||
"DPREncoder",
|
||||
"DPRReader",
|
||||
"DPRSpanPredictor",
|
||||
"FlaubertForQuestionAnswering",
|
||||
"FunnelBaseModel",
|
||||
"GPT2DoubleHeadsModel",
|
||||
"OpenAIGPTDoubleHeadsModel",
|
||||
"ProphetNetDecoder",
|
||||
"ProphetNetEncoder",
|
||||
"RagModel",
|
||||
"RagSequenceForGeneration",
|
||||
"RagTokenForGeneration",
|
||||
"T5Stack",
|
||||
"TFBertForNextSentencePrediction",
|
||||
"TFFunnelBaseModel",
|
||||
"TFGPT2DoubleHeadsModel",
|
||||
"TFMobileBertForNextSentencePrediction",
|
||||
"TFOpenAIGPTDoubleHeadsModel",
|
||||
"XLMForQuestionAnswering",
|
||||
"XLMProphetNetDecoder",
|
||||
"XLMProphetNetEncoder",
|
||||
"XLNetForQuestionAnswering",
|
||||
]
|
||||
|
||||
# This is to make sure the transformers module imported is the one in the repo.
|
||||
spec = importlib.util.spec_from_file_location(
|
||||
"transformers",
|
||||
@ -282,6 +310,45 @@ def check_all_models_are_documented():
|
||||
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
||||
|
||||
|
||||
def get_all_auto_configured_models():
|
||||
""" Return the list of all models in at least one auto class."""
|
||||
result = set() # To avoid duplicates we concatenate all model classes in a set.
|
||||
for attr_name in dir(transformers.modeling_auto):
|
||||
if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING"):
|
||||
result = result | set(getattr(transformers.modeling_auto, attr_name).values())
|
||||
for attr_name in dir(transformers.modeling_tf_auto):
|
||||
if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING"):
|
||||
result = result | set(getattr(transformers.modeling_tf_auto, attr_name).values())
|
||||
return [cls.__name__ for cls in result]
|
||||
|
||||
|
||||
def check_models_are_auto_configured(module, all_auto_models):
|
||||
""" Check models defined in module are each in an auto class."""
|
||||
defined_models = get_models(module)
|
||||
failures = []
|
||||
for model_name, _ in defined_models:
|
||||
if model_name not in all_auto_models and model_name not in IGNORE_NON_AUTO_CONFIGURED:
|
||||
failures.append(
|
||||
f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
|
||||
"If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
|
||||
"`utils/check_repo.py`."
|
||||
)
|
||||
return failures
|
||||
|
||||
|
||||
def check_all_models_are_auto_configured():
|
||||
""" Check all models are each in an auto class."""
|
||||
modules = get_model_modules()
|
||||
all_auto_models = get_all_auto_configured_models()
|
||||
failures = []
|
||||
for module in modules:
|
||||
new_failures = check_models_are_auto_configured(module, all_auto_models)
|
||||
if new_failures is not None:
|
||||
failures += new_failures
|
||||
if len(failures) > 0:
|
||||
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
||||
|
||||
|
||||
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")
|
||||
|
||||
|
||||
@ -325,6 +392,8 @@ def check_repo_quality():
|
||||
check_all_models_are_tested()
|
||||
print("Checking all models are properly documented.")
|
||||
check_all_models_are_documented()
|
||||
print("Checking all models are in at least one auto class.")
|
||||
check_all_models_are_auto_configured()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user