* Added image-text-to-text pipeline to task guide
* Update docs/source/en/tasks/image_text_to_text.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/tasks/image_text_to_text.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/tasks/image_text_to_text.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/tasks/image_text_to_text.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Merge codeblocks
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* add deformable detr image processor fast
* add fast processor to doc
* fix copies
* nit docstring
* Add tests gpu/cpu and fix docstrings
* fix docstring
* import changes from detr
* fix imports
* rebase and fix
* fix input data format change in detr and rtdetr fast
* add support for openai api image_url input
* change continue to elif
* Explicitely add support for OpenAI/TGI chat format
* rewrite content to transformers chat format and add tests
* Add support for typing of image type in chat templates
* add base64 to possible image types
* refactor nesting
* Fix post process function called in the instance segmentation example of mask2former
* fix description and additional notes for post_process_instance_segmentation of maskformers
* remove white space in maskformers post_process_instance_segmentation doc
* change image.size[::-1] to height and width for clarity in segmentation examples
* add Cambricon MLUs support
* fix mlu device rng state
* up for quality check
* up mlu to support fp16
* fix mlu device dependency error
* fix mlu device dependency error
* enable mlu device for bf16
* fix mlu device memory tracker
* Cambricon support SDPA and flash_attn
* MLU devices : Checks if `mlu` is available via an `cndev-based` check which won't trigger the drivers and leave mlu
* softcapping
* soft cap before the mask
* style
* ...
* super nit
* update
* fixes
* update
* small issue with modular
* fix modular imports
* update
* fixup
* simplify a hell lot
* simplify cleaning imports
* finish fixing
* update our design
* nits
* use a deprecation cycle
* updates
* Fix modular (recursive deps need to always be computed after merges!)
* push
* fix
* update
* fix modular order
* make fix-copies
* updates
* update
* ?
* don't compile for now
* ?
* fix some stuff
* donc!
* fix copies
* update
* fixup
* ?
* fix two tests
* fix?
* for now, don't use head info
* eager when output attentoin and sdpa or flash as it's the simplest behaviour (for our tests as well :))
* fix-copies
* revert sdpa check
* Apply suggestions from code review
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
* rebase, fix-copies and push
* add a slow integration test
* update the test
* fix left padding issue
* fix test
* remove duplicate scaling
* quality
* add a small test and make sure it works
* 2b
---------
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
* doc: Trainer.hyperparameter_search docstring discrepancy solved
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
19d58d31f has introduced a context manager to manage subtests of
test_training_gradient_checkpointing. However, test body was not
moved under "with" statement. Thus, while tests are correctly
marked as skipped, test bodies were still executed. In some cases,
as with llama this caused attribute errors.
Fixes: #34722
Fixes: 19d58d31f ("Add MLLama (#33703)")
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* Add model skeletion with transformers-cli add-new-model-like
* Convert config to modular, add rms_norm_eps, delete clip_qkv
* Convert model to modular, add RMSNorm
* Add flash attention with qk norm and no qkv clipping
* Add decoder layer with RMSNorm after attention/feedforward layers
* Add base and causal model
* Add converter improvements from OLMo repo
* Update weight loading in OLMo to HF converter
* Set correct default for rms_norm_eps
* Set correct pipeline_model_mapping in test
* Run make fixup
* Fix model type
* Re-run modular conversion
* Manually set config docs to fix build errors
* Convert olmo-1124 to olmo_1124 to fix flash attention docs errors
* Start updating tests
* Update tests
* Copy upstream test_eager_matches_sdpa_inference_1_bfloat16 changes to olmo_1124
* Rename input_layernorm and post_attention_layernorm to reflect their ops better
* Use correct tokenizer
* Remove test unsupported by GPT2 tokenizer
* Create GenerationConfig outside of from_pretrained call
* Use simpler init file structure
* Add explicit __all__ to support simplified init
* Make safetensor serialization the default
* Update OLMo November 2024 docs
* remove v4.44 deprecations
* PR comments
* deprecations scheduled for v4.50
* hub version update
* make fiuxp
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Remove FSDP wrapping from sub-models.
* solve conflict trainer.py
* make fixup
* add unit test for fsdp_auto_wrap_policy when using auto_find_batch_size
* put back extract_model_from_parallel
* use transformers unwrap_model
* Retain newlines in chat template when
* Add try/except
* Add regression test
* Simplify test
* Apply suggestions from code review
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* add XPU path
* use accelerate API
* Update docs/source/en/tasks/semantic_segmentation.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* update more places with accelerate API
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>