* Don't import libs to check they are available
* Don't import integrations at init
* Add importlib_metdata to deps
* Remove old vars references
* Avoid syntax error
* Adapt testing utils
* Try to appease torchhub
* Add dependency
* Remove more private variables
* Fix typo
* Another typo
* Refine the tf availability test
* Define new output dataclasses for greedy generation
* Add output_[...] flags in greedy generation methods
Added output_attentions, output_hidden_states, output_scores flags in
generate and greedy_search methods in GenerationMixin.
* [WIP] Implement logic and tests for output flags in generation
* Update GreedySearchOutput classes & docstring
* Implement greedy search output accumulation logic
Update greedy_search unittests
Fix generate method return value docstring
Properly init flags with the default config
* Update configuration to add output_scores flag
* Fix test_generation_utils
Sort imports and fix isinstance tests for GreedySearchOutputs
* Fix typo in generation_utils
* Add return_dict_in_generate for backwards compatibility
* Add return_dict_in_generate flag in config
* Fix tyPo in configuration
* Fix handling of attentions and hidden_states flags
* Make style & quality
* first attempt attentions
* some corrections
* improve tests
* special models requires special test
* disable xlm test for now
* clean tests
* fix for tf
* isort
* Add output dataclasses for other generation methods
* Add logic to return dict in sample generation
* Complete test for sample generation
- Pass output_attentions and output_hidden_states flags to encoder in
encoder-decoder models
- Fix import satements order in test_generation_utils file
* Add logic to return dict in sample generation
- Refactor tests to avoid using self.assertTrue, which provides
scarce information when the test fails
- Add tests for the three beam_search methods: vanilla, sample and
grouped
* Style doc
* Fix copy-paste error in generation tests
* Rename logits to scores and refactor
* Refactor group_beam_search for consistency
* make style
* add sequences_scores
* fix all tests
* add docs
* fix beam search finalize test
* correct docstring
* clean some files
* Made suggested changes to the documentation
* Style doc ?
* Style doc using the Python util
* Update src/transformers/generation_utils.py
* fix empty lines
* fix all test
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* create model
* add integration
* save current state
* make integration tests pass
* add one more test
* add explanation to tests
* remove from bart
* add padding
* remove unnecessary test
* make all tests pass
* re-add cookie cutter tests
* finish PyTorch
* fix attention test
* Update tests/test_modeling_common.py
* revert change
* remove unused file
* add string to doc
* save intermediate
* make tf integration tests pass
* finish tf
* fix doc
* fix docs again
* add led to doctree
* add to auto tokenizer
* added tips for led
* make style
* apply jplus statements
* correct tf longformer
* apply lysandres suggestions
* apply sylvains suggestions
* Apply suggestions from code review
* Create modeling_tf_dpr.py
* Add TFDPR
* Add back TFPegasus, TFMarian, TFMBart, TFBlenderBot
last commit accidentally deleted these 4 lines, so I recover them back
* Add TFDPR
* Add TFDPR
* clean up some comments, add TF input-style doc string
* Add TFDPR
* Make return_dict=False as default
* Fix return_dict bug (in .from_pretrained)
* Add get_input_embeddings()
* Create test_modeling_tf_dpr.py
The current version is already passed all 27 tests!
Please see the test run at :
https://colab.research.google.com/drive/1czS_m9zy5k-iSJbzA_DP1k1xAAC_sdkf?usp=sharing
* fix quality
* delete init weights
* run fix copies
* fix repo consis
* del config_class, load_tf_weights
They shoud be 'pytorch only'
* add config_class back
after removing it, test failed ... so totally only removing "use_tf_weights = None" on Lysandre suggestion
* newline after .. note::
* import tf, np (Necessary for ModelIntegrationTest)
* slow_test from_pretrained with from_pt=True
At the moment we don't have TF weights (since we don't have official official TF model)
Previously, I did not run slow test, so I missed this bug
* Add simple TFDPRModelIntegrationTest
Note that this is just a test that TF and Pytorch gives approx. the same output.
However, I could not test with the official DPR repo's output yet
* upload correct tf model
* remove position_ids as missing keys
* fix RagSeq generate with context_input_ids
fix RagSeq generate with context_input_ids
* apply style
* delete unused lines
* Add test_rag_sequence_generate_batch_from_context_input_ids
* Readability improved
* stylying
* Stylize
* typos
* add check_model_generate_from_context_input_ids
* make style
* Apply suggestions from code review
* make style2
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: patrickvonplaten <patrick@huggingface.co>
* add past_key_values
* add use_cache option
* make mask before cutting ids
* adjust position_ids according to past_key_values
* flatten past_key_values
* fix positional embeds
* fix _reorder_cache
* set use_cache to false when not decoder, fix attention mask init
* add test for caching
* add past_key_values for Roberta
* fix position embeds
* add caching test for roberta
* add doc
* make style
* doc, fix attention mask, test
* small fixes
* adress patrick's comments
* input_ids shouldn't start with pad token
* use_cache only when decoder
* make consistent with bert
* make copies consistent
* add use_cache to encoder
* add past_key_values to tapas attention
* apply suggestions from code review
* make coppies consistent
* add attn mask in tests
* remove copied from longformer
* apply suggestions from code review
* fix bart test
* nit
* simplify model outputs
* fix doc
* fix output ordering
* Add label smoothing in Trainer
* Add options for scheduler and Adafactor in Trainer
* Put Seq2SeqTrainer in the main lib
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Address review comments and adapt scripts
* Documentation
* Move test not using script to tests folder
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add new run_swag example
* Add check
* Add sample
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Very important change to make Lysandre happy
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* First commit: adding all files from tapas_v3
* Fix multiple bugs including soft dependency and new structure of the library
* Improve testing by adding torch_device to inputs and adding dependency on scatter
* Use Python 3 inheritance rather than Python 2
* First draft model cards of base sized models
* Remove model cards as they are already on the hub
* Fix multiple bugs with integration tests
* All model integration tests pass
* Remove print statement
* Add test for convert_logits_to_predictions method of TapasTokenizer
* Incorporate suggestions by Google authors
* Fix remaining tests
* Change position embeddings sizes to 512 instead of 1024
* Comment out positional embedding sizes
* Update PRETRAINED_VOCAB_FILES_MAP and PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
* Added more model names
* Fix truncation when no max length is specified
* Disable torchscript test
* Make style & make quality
* Quality
* Address CI needs
* Test the Masked LM model
* Fix the masked LM model
* Truncate when overflowing
* More much needed docs improvements
* Fix some URLs
* Some more docs improvements
* Test PyTorch scatter
* Set to slow + minify
* Calm flake8 down
* First commit: adding all files from tapas_v3
* Fix multiple bugs including soft dependency and new structure of the library
* Improve testing by adding torch_device to inputs and adding dependency on scatter
* Use Python 3 inheritance rather than Python 2
* First draft model cards of base sized models
* Remove model cards as they are already on the hub
* Fix multiple bugs with integration tests
* All model integration tests pass
* Remove print statement
* Add test for convert_logits_to_predictions method of TapasTokenizer
* Incorporate suggestions by Google authors
* Fix remaining tests
* Change position embeddings sizes to 512 instead of 1024
* Comment out positional embedding sizes
* Update PRETRAINED_VOCAB_FILES_MAP and PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
* Added more model names
* Fix truncation when no max length is specified
* Disable torchscript test
* Make style & make quality
* Quality
* Address CI needs
* Test the Masked LM model
* Fix the masked LM model
* Truncate when overflowing
* More much needed docs improvements
* Fix some URLs
* Some more docs improvements
* Add add_pooling_layer argument to TapasModel
Fix comments by @sgugger and @patrickvonplaten
* Fix issue in docs + fix style and quality
* Clean up conversion script and add task parameter to TapasConfig
* Revert the task parameter of TapasConfig
Some minor fixes
* Improve conversion script and add test for absolute position embeddings
* Improve conversion script and add test for absolute position embeddings
* Fix bug with reset_position_index_per_cell arg of the conversion cli
* Add notebooks to the examples directory and fix style and quality
* Apply suggestions from code review
* Move from `nielsr/` to `google/` namespace
* Apply Sylvain's comments
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Rogge Niels <niels.rogge@howest.be>
Co-authored-by: LysandreJik <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* add model parallelism to T5EncoderModel
add model parallelism to T5EncoderModel
* remove decoder from T5EncoderModel parallelize
* uodate T5EncoderModel docs
* Extend T5ModelTest for T5EncoderModel
* fix T5Stask using range for get_device_map
* fix style
Co-authored-by: Ahmed Elnaggar <elnaggar@rostlab.informatik.tu-muenchen.de>
* Resize the biases in same time than the embeddings
* Trigger CI
* Biases are not reset anymore
* Remove get_output_embeddings + better LM model detection in generation utils
* Apply style
* First test on BERT
* Update docstring + new name
* Apply the new resizing logic to all the models
* fix tests
* Apply style
* Update the template
* Fix naming
* Fix naming
* Apply style
* Apply style
* Remove unused import
* Revert get_output_embeddings
* Trigger CI
* Update num parameters
* Restore get_output_embeddings in TFPretrainedModel and add comments
* Style
* Add decoder resizing
* Style
* Fix tests
* Separate bias and decoder resize
* Fix tests
* Fix tests
* Apply style
* Add bias resizing in MPNet
* Trigger CI
* Apply style
* remove make on the fly linear embedding
* start refactor
* big first refactor
* save intermediate
* save intermediat
* correct mask issue
* save tests
* refactor padding masks
* make all tests pass
* further refactor
* make pegasus test pass
* fix bool if
* fix leftover tests
* continue
* bart renaming
* delete torchscript test hack
* fix imports in tests
* correct shift
* fix docs and repo cons
* re-add fix for FSTM
* typo in test
* fix typo
* fix another typo
* continue
* hot fix 2 for tf
* small fixes
* refactor types linting
* continue
* finish refactor
* fix import in tests
* better bart names
* further refactor and add test
* delete hack
* apply sylvains and lysandres commens
* small perf improv
* further perf improv
* improv perf
* fix typo
* make style
* small perf improv
* Remove "Model" suffix from Flax models to look more 🤗
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Initial working (forward + backward) for Flax MLM training example.
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Simply code
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Addressing comments, using module and moving to LM task.
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Restore parameter name "module" wrongly renamed model.
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Restore correct output ordering...
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Actually commit the example 😅
Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>
* Add FlaxBertModelForMaskedLM after rebasing.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Make it possible to initialize the training from scratch
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Reuse flax linen example of cross entropy loss
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Added specific data collator for flax
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Remove todo for data collator
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Added evaluation step
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Added ability to provide dtype to support bfloat16 on TPU
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Enable flax tensorboard output
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Enable jax.pmap support.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Ensure batches are correctly sized to be dispatched with jax.pmap
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Enable bfloat16 with --fp16 cmdline args
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Correctly export metrics to tensorboard
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Added dropout and ability to use it.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Effectively enable & disable during training and evaluation steps.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Oops.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Enable specifying kernel initializer scale
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Style.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Added warmup step to the learning rate scheduler.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Fix typo.
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Print training loss
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Make style
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* fix linter issue (flake8)
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Fix model matching
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Fix dummies
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Fix non default dtype on Flax models
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Use the same create_position_ids_from_input_ids for FlaxRoberta
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Make Roberta attention as Bert
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* fix copy
Signed-off-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Wording.
Co-authored-by: Marc van Zee <marcvanzee@gmail.com>
Co-authored-by: Marc van Zee <marcvanzee@gmail.com>
* diverse beam search
* bug fixes
* bug fixes
* bug fix
* separate out diverse_beam_search function
* separate out diverse_beam_search function
* bug fix
* improve code quality
* bug fix
* bug fix
* separate out diverse beam search scorer
* code format
* code format
* code format
* code format
* add test
* code format
* documentation changes
* code quality
* add slow integration tests
* more general name
* refactor into logits processor
* add test
* avoid too much copy paste
* refactor
* add to docs
* fix-copies
* bug fix
* Revert "bug fix"
This reverts commit c99eb5a8dc.
* improve comment
* implement sylvains feedback
Co-authored-by: Ayush Jain <a.jain@sprinklr.com>
Co-authored-by: ayushtiku5 <40797286+ayushtiku5@users.noreply.github.com>
* Add new SQUAD example
* Same with a task-specific Trainer
* Address review comment.
* Small fixes
* Initial work for XLNet
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Final clean up and working XLNet script
* Test and debug
* Final working version
* Add new SQUAD example
* Same with a task-specific Trainer
* Address review comment.
* Small fixes
* Initial work for XLNet
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Final clean up and working XLNet script
* Test and debug
* Final working version
* Add tick
* Update README
* Address review comments
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Removed unused `encoder_hidden_states` and `encoder_attention_mask` from MobileBert
* Removed decoder tests for MobileBert
* Removed now unnecessary import
* initial commit
* [cli] lfs commands
* Fix FileSlice
* Tweak to FileSlice
* [hf_api] Backport filetype arg from `datasets`
cc @lhoestq
* Silm down the CI while i'm working
* Ok let's try this in CI
* Update config.yml
* Do not try this at home
* one more try
* Update lfs.py
* Revert "Tweak to FileSlice"
This reverts commit d7e32c4b35.
* Update test_hf_api.py
* Update test_hf_api.py
* Update test_hf_api.py
* CI still green?
* make CI green again?
* Update test_hf_api.py
* make CI red again?
* Update test_hf_api.py
* add CI style back
* Fix CI?
* oh my
* doc + switch back to real staging endpoint
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Pierric Cistac <Pierrci@users.noreply.github.com>
* Fix docblock + f-strings
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Pierric Cistac <Pierrci@users.noreply.github.com>
* Add TFGPT2ForSequenceClassification based on DialogRPT
* Add TFGPT2ForSequenceClassification based on DialogRPT
* TFGPT2ForSequenceClassification based on DialogRPT-refactored code, implemented review comments and added input processing
* Add TFGPT2ForSequenceClassification based on DialogRPT
* TFGPT2ForSequenceClassification based on DialogRPT-refactored code, implemented review comments and added input processing
* code refactor for latest other TF PR
* code refactor
* code refactor
* Update modeling_tf_gpt2.py
* Warning about too long input for fast tokenizers too
If truncation is not set in tokenizers, but the tokenization is too long
for the model (`model_max_length`), we used to trigger a warning that
The input would probably fail (which it most likely will).
This PR re-enables the warning for fast tokenizers too and uses common
code for the trigger to make sure it's consistent across.
* Checking for pair of inputs too.
* Making the function private and adding it's doc.
* Remove formatting ?? in odd place.
* Missed uppercase.