mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-30 17:52:35 +06:00
Refactor FLAX tests (#9034)
This commit is contained in:
parent
1310e1a758
commit
8d4bb02056
@ -50,6 +50,7 @@ if is_tf_available():
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_flax_available():
|
||||
import jax.numpy as jnp
|
||||
|
||||
|
@ -14,70 +14,98 @@
|
||||
|
||||
import unittest
|
||||
|
||||
from numpy import ndarray
|
||||
from transformers import BertConfig, is_flax_available
|
||||
from transformers.testing_utils import require_flax
|
||||
|
||||
from transformers import BertTokenizerFast, TensorType, is_flax_available, is_torch_available
|
||||
from transformers.testing_utils import require_flax, require_torch
|
||||
from .test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
|
||||
|
||||
|
||||
if is_flax_available():
|
||||
import os
|
||||
|
||||
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8
|
||||
|
||||
import jax
|
||||
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
from transformers.models.bert.modeling_bert import BertModel
|
||||
class FlaxBertModelTester(unittest.TestCase):
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_attention_mask=True,
|
||||
use_token_type_ids=True,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
type_sequence_label_size=2,
|
||||
initializer_range=0.02,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_attention_mask = use_attention_mask
|
||||
self.use_token_type_ids = use_token_type_ids
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
attention_mask = None
|
||||
if self.use_attention_mask:
|
||||
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
config = BertConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
is_decoder=False,
|
||||
initializer_range=self.initializer_range,
|
||||
)
|
||||
|
||||
return config, input_ids, token_type_ids, attention_mask
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, input_ids, token_type_ids, attention_mask = config_and_inputs
|
||||
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_flax
|
||||
@require_torch
|
||||
class FlaxBertModelTest(unittest.TestCase):
|
||||
def assert_almost_equals(self, a: ndarray, b: ndarray, tol: float):
|
||||
diff = (a - b).sum()
|
||||
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol})")
|
||||
class FlaxBertModelTest(FlaxModelTesterMixin, unittest.TestCase):
|
||||
|
||||
def test_from_pytorch(self):
|
||||
with torch.no_grad():
|
||||
with self.subTest("bert-base-cased"):
|
||||
tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased")
|
||||
fx_model = FlaxBertModel.from_pretrained("bert-base-cased")
|
||||
pt_model = BertModel.from_pretrained("bert-base-cased")
|
||||
all_model_classes = (FlaxBertModel,) if is_flax_available() else ()
|
||||
|
||||
# Check for simple input
|
||||
pt_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.PYTORCH)
|
||||
fx_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.JAX)
|
||||
pt_outputs = pt_model(**pt_inputs).to_tuple()
|
||||
fx_outputs = fx_model(**fx_inputs)
|
||||
|
||||
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
|
||||
|
||||
for fx_output, pt_output in zip(fx_outputs, pt_outputs):
|
||||
self.assert_almost_equals(fx_output, pt_output.numpy(), 5e-3)
|
||||
|
||||
def test_multiple_sequences(self):
|
||||
tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased")
|
||||
model = FlaxBertModel.from_pretrained("bert-base-cased")
|
||||
|
||||
sequences = ["this is an example sentence", "this is another", "and a third one"]
|
||||
encodings = tokenizer(sequences, return_tensors=TensorType.JAX, padding=True, truncation=True)
|
||||
|
||||
@jax.jit
|
||||
def model_jitted(input_ids, attention_mask=None, token_type_ids=None):
|
||||
return model(input_ids, attention_mask, token_type_ids)
|
||||
|
||||
with self.subTest("JIT Disabled"):
|
||||
with jax.disable_jit():
|
||||
tokens, pooled = model_jitted(**encodings)
|
||||
self.assertEqual(tokens.shape, (3, 7, 768))
|
||||
self.assertEqual(pooled.shape, (3, 768))
|
||||
|
||||
with self.subTest("JIT Enabled"):
|
||||
jitted_tokens, jitted_pooled = model_jitted(**encodings)
|
||||
|
||||
self.assertEqual(jitted_tokens.shape, (3, 7, 768))
|
||||
self.assertEqual(jitted_pooled.shape, (3, 768))
|
||||
def setUp(self):
|
||||
self.model_tester = FlaxBertModelTester(self)
|
||||
|
127
tests/test_modeling_flax_common.py
Normal file
127
tests/test_modeling_flax_common.py
Normal file
@ -0,0 +1,127 @@
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
|
||||
import transformers
|
||||
from transformers import is_flax_available, is_torch_available
|
||||
from transformers.testing_utils import require_flax, require_torch
|
||||
|
||||
|
||||
if is_flax_available():
|
||||
import os
|
||||
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
from flax.traverse_util import unflatten_dict
|
||||
|
||||
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
def ids_tensor(shape, vocab_size, rng=None):
|
||||
"""Creates a random int32 tensor of the shape within the vocab size."""
|
||||
if rng is None:
|
||||
rng = random.Random()
|
||||
|
||||
total_dims = 1
|
||||
for dim in shape:
|
||||
total_dims *= dim
|
||||
|
||||
values = []
|
||||
for _ in range(total_dims):
|
||||
values.append(rng.randint(0, vocab_size - 1))
|
||||
|
||||
output = np.array(values, dtype=jnp.int32).reshape(shape)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def random_attention_mask(shape, rng=None):
|
||||
attn_mask = ids_tensor(shape, vocab_size=2, rng=rng)
|
||||
# make sure that at least one token is attended to for each batch
|
||||
attn_mask[:, -1] = 1
|
||||
return attn_mask
|
||||
|
||||
|
||||
def convert_pt_model_to_flax(pt_model, config, flax_model_cls):
|
||||
state = pt_model.state_dict()
|
||||
state = {k: v.numpy() for k, v in state.items()}
|
||||
state = flax_model_cls.convert_from_pytorch(state, config)
|
||||
state = unflatten_dict({tuple(k.split(".")): v for k, v in state.items()})
|
||||
return flax_model_cls(config, state, dtype=jnp.float32)
|
||||
|
||||
|
||||
@require_flax
|
||||
class FlaxModelTesterMixin:
|
||||
model_tester = None
|
||||
all_model_classes = ()
|
||||
|
||||
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
|
||||
diff = np.abs((a - b)).sum()
|
||||
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")
|
||||
|
||||
@require_torch
|
||||
def test_equivalence_flax_pytorch(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
with self.subTest(model_class.__name__):
|
||||
pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning
|
||||
pt_model_class = getattr(transformers, pt_model_class_name)
|
||||
pt_model = pt_model_class(config).eval()
|
||||
|
||||
fx_model = convert_pt_model_to_flax(pt_model, config, model_class)
|
||||
|
||||
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in inputs_dict.items()}
|
||||
|
||||
with torch.no_grad():
|
||||
pt_outputs = pt_model(**pt_inputs).to_tuple()
|
||||
fx_outputs = fx_model(**inputs_dict)
|
||||
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
|
||||
for fx_output, pt_output in zip(fx_outputs, pt_outputs):
|
||||
self.assert_almost_equals(fx_output, pt_output.numpy(), 5e-3)
|
||||
|
||||
@require_torch
|
||||
def test_jit_compilation(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
with self.subTest(model_class.__name__):
|
||||
|
||||
# TODO later: have some way to initialize easily a Flax model from config, for now I go through PT
|
||||
pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning
|
||||
pt_model_class = getattr(transformers, pt_model_class_name)
|
||||
pt_model = pt_model_class(config).eval()
|
||||
|
||||
model = convert_pt_model_to_flax(pt_model, config, model_class)
|
||||
|
||||
@jax.jit
|
||||
def model_jitted(input_ids, attention_mask=None, token_type_ids=None):
|
||||
return model(input_ids, attention_mask, token_type_ids)
|
||||
|
||||
with self.subTest("JIT Disabled"):
|
||||
with jax.disable_jit():
|
||||
outputs = model_jitted(**inputs_dict)
|
||||
|
||||
with self.subTest("JIT Enabled"):
|
||||
jitted_outputs = model_jitted(**inputs_dict)
|
||||
|
||||
self.assertEqual(len(outputs), len(jitted_outputs))
|
||||
for jitted_output, output in zip(jitted_outputs, outputs):
|
||||
self.assertEqual(jitted_output.shape, output.shape)
|
@ -14,70 +14,98 @@
|
||||
|
||||
import unittest
|
||||
|
||||
from numpy import ndarray
|
||||
from transformers import RobertaConfig, is_flax_available
|
||||
from transformers.testing_utils import require_flax
|
||||
|
||||
from transformers import RobertaTokenizerFast, TensorType, is_flax_available, is_torch_available
|
||||
from transformers.testing_utils import require_flax, require_torch
|
||||
from .test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
|
||||
|
||||
|
||||
if is_flax_available():
|
||||
import os
|
||||
|
||||
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8
|
||||
|
||||
import jax
|
||||
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
from transformers.models.roberta.modeling_roberta import RobertaModel
|
||||
class FlaxRobertaModelTester(unittest.TestCase):
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_attention_mask=True,
|
||||
use_token_type_ids=True,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
type_sequence_label_size=2,
|
||||
initializer_range=0.02,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_attention_mask = use_attention_mask
|
||||
self.use_token_type_ids = use_token_type_ids
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
attention_mask = None
|
||||
if self.use_attention_mask:
|
||||
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
config = RobertaConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
is_decoder=False,
|
||||
initializer_range=self.initializer_range,
|
||||
)
|
||||
|
||||
return config, input_ids, token_type_ids, attention_mask
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, input_ids, token_type_ids, attention_mask = config_and_inputs
|
||||
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_flax
|
||||
@require_torch
|
||||
class FlaxRobertaModelTest(unittest.TestCase):
|
||||
def assert_almost_equals(self, a: ndarray, b: ndarray, tol: float):
|
||||
diff = (a - b).sum()
|
||||
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol})")
|
||||
class FlaxRobertaModelTest(FlaxModelTesterMixin, unittest.TestCase):
|
||||
|
||||
def test_from_pytorch(self):
|
||||
with torch.no_grad():
|
||||
with self.subTest("roberta-base"):
|
||||
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
||||
fx_model = FlaxRobertaModel.from_pretrained("roberta-base")
|
||||
pt_model = RobertaModel.from_pretrained("roberta-base")
|
||||
all_model_classes = (FlaxRobertaModel,) if is_flax_available() else ()
|
||||
|
||||
# Check for simple input
|
||||
pt_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.PYTORCH)
|
||||
fx_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.JAX)
|
||||
pt_outputs = pt_model(**pt_inputs)
|
||||
fx_outputs = fx_model(**fx_inputs)
|
||||
|
||||
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
|
||||
|
||||
for fx_output, pt_output in zip(fx_outputs, pt_outputs.to_tuple()):
|
||||
self.assert_almost_equals(fx_output, pt_output.numpy(), 5e-3)
|
||||
|
||||
def test_multiple_sequences(self):
|
||||
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
||||
model = FlaxRobertaModel.from_pretrained("roberta-base")
|
||||
|
||||
sequences = ["this is an example sentence", "this is another", "and a third one"]
|
||||
encodings = tokenizer(sequences, return_tensors=TensorType.JAX, padding=True, truncation=True)
|
||||
|
||||
@jax.jit
|
||||
def model_jitted(input_ids, attention_mask=None, token_type_ids=None):
|
||||
return model(input_ids, attention_mask, token_type_ids)
|
||||
|
||||
with self.subTest("JIT Disabled"):
|
||||
with jax.disable_jit():
|
||||
tokens, pooled = model_jitted(**encodings)
|
||||
self.assertEqual(tokens.shape, (3, 7, 768))
|
||||
self.assertEqual(pooled.shape, (3, 768))
|
||||
|
||||
with self.subTest("JIT Enabled"):
|
||||
jitted_tokens, jitted_pooled = model_jitted(**encodings)
|
||||
|
||||
self.assertEqual(jitted_tokens.shape, (3, 7, 768))
|
||||
self.assertEqual(jitted_pooled.shape, (3, 768))
|
||||
def setUp(self):
|
||||
self.model_tester = FlaxRobertaModelTester(self)
|
||||
|
Loading…
Reference in New Issue
Block a user