mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
[docs] Add integration test example to copy pasta template (#5961)
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
parent
01116d3c5b
commit
feeb956a19
@ -215,7 +215,7 @@ Follow these steps to start contributing:
|
||||
`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
|
||||
- If you are adding a new tokenizer, write tests, and make sure
|
||||
`RUN_SLOW=1 python -m pytest tests/test_tokenization_{your_model_name}.py` passes.
|
||||
CircleCI does not run the slow tests.
|
||||
CircleCI does not run the slow tests, but github actions does every night!
|
||||
6. All public methods must have informative docstrings that work nicely with sphinx. See `modeling_ctrl.py` for an
|
||||
example.
|
||||
|
||||
@ -239,6 +239,16 @@ $ pip install -r examples/requirements.txt # only needed the first time
|
||||
$ python -m pytest -n auto --dist=loadfile -s -v ./examples/
|
||||
```
|
||||
|
||||
and for the slow tests:
|
||||
|
||||
```bash
|
||||
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
|
||||
```
|
||||
or
|
||||
```python
|
||||
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
|
||||
```
|
||||
|
||||
In fact, that's how `make test` and `make test-examples` are implemented!
|
||||
|
||||
You can specify a smaller set of tests in order to test only the feature
|
||||
|
@ -5,6 +5,7 @@ import unittest
|
||||
from unittest.mock import patch
|
||||
|
||||
import run_glue_deebert
|
||||
from transformers.testing_utils import slow
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
@ -20,6 +21,7 @@ def get_setup_file():
|
||||
|
||||
|
||||
class DeeBertTests(unittest.TestCase):
|
||||
@slow
|
||||
def test_glue_deebert(self):
|
||||
stream_handler = logging.StreamHandler(sys.stdout)
|
||||
logger.addHandler(stream_handler)
|
||||
|
@ -128,3 +128,11 @@ if _torch_available:
|
||||
torch_device = "cuda" if parse_flag_from_env("USE_CUDA") else "cpu"
|
||||
else:
|
||||
torch_device = None
|
||||
|
||||
|
||||
def require_torch_and_cuda(test_case):
|
||||
"""Decorator marking a test that requires CUDA and PyTorch). """
|
||||
if torch_device != "cuda":
|
||||
return unittest.skip("test requires CUDA")
|
||||
else:
|
||||
return test_case
|
||||
|
@ -1,5 +1,15 @@
|
||||
# How to add a new example script in 🤗Transformers
|
||||
|
||||
This folder provide a template for adding a new example script implementing a training or inference task with the models in the 🤗Transformers library.
|
||||
Add tests!
|
||||
|
||||
Currently only examples for PyTorch are provided which are adaptations of the library's SQuAD examples which implement single-GPU and distributed training with gradient accumulation and mixed-precision (using NVIDIA's apex library) to cover a reasonable range of use cases.
|
||||
|
||||
These folder can be put in a subdirectory under your example's name, like `examples/deebert`.
|
||||
|
||||
|
||||
Best Practices:
|
||||
- use `Trainer`/`TFTrainer`
|
||||
- write an @slow test that checks that your model can train on one batch and get a low loss.
|
||||
- this test should use cuda if it's available. (e.g. by checking `transformers.torch_device`)
|
||||
- adding an `eval_xxx.py` script that can evaluate a pretrained checkpoint.
|
||||
- tweet about your new example with a carbon screenshot of how to run it and tag @huggingface
|
||||
|
@ -18,6 +18,7 @@ Here an overview of the general workflow:
|
||||
- [ ] add model/configuration/tokenization classes
|
||||
- [ ] add conversion scripts
|
||||
- [ ] add tests
|
||||
- [ ] add @slow integration test
|
||||
- [ ] finalize
|
||||
|
||||
Let's detail what should be done at each step
|
||||
|
@ -347,23 +347,7 @@ class XxxModel(XxxPreTrainedModel):
|
||||
if token_type_ids is None:
|
||||
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
||||
|
||||
# We create a 3D attention mask from a 2D tensor mask.
|
||||
# (this can be done with self.invert_attention_mask)
|
||||
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
||||
# this attention mask is more simple than the triangular masking of causal attention
|
||||
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
||||
|
||||
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
|
||||
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
||||
|
||||
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
|
@ -20,7 +20,7 @@ from transformers import is_torch_available
|
||||
|
||||
from .test_configuration_common import ConfigTester
|
||||
from .test_modeling_common import ModelTesterMixin, ids_tensor
|
||||
from .utils import CACHE_DIR, require_torch, slow, torch_device
|
||||
from .utils import require_torch, require_torch_and_cuda, slow, torch_device
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -31,8 +31,207 @@ if is_torch_available():
|
||||
XxxForQuestionAnswering,
|
||||
XxxForSequenceClassification,
|
||||
XxxForTokenClassification,
|
||||
AutoModelForMaskedLM,
|
||||
AutoTokenizer,
|
||||
)
|
||||
from transformers.modeling_xxx import XXX_PRETRAINED_MODEL_ARCHIVE_LIST
|
||||
from transformers.file_utils import cached_property
|
||||
|
||||
#
|
||||
|
||||
|
||||
class XxxModelTester:
|
||||
"""You can also import this e.g from .test_modeling_bart import BartModelTester """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_token_type_ids=True,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
type_sequence_label_size=2,
|
||||
initializer_range=0.02,
|
||||
num_labels=3,
|
||||
num_choices=4,
|
||||
scope=None,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_input_mask = use_input_mask
|
||||
self.use_token_type_ids = use_token_type_ids
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_labels = num_labels
|
||||
self.num_choices = num_choices
|
||||
self.scope = scope
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
sequence_labels = None
|
||||
token_labels = None
|
||||
choice_labels = None
|
||||
if self.use_labels:
|
||||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||
|
||||
config = XxxConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
initializer_range=self.initializer_range,
|
||||
)
|
||||
|
||||
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
|
||||
def check_loss_output(self, result):
|
||||
self.parent.assertListEqual(list(result["loss"].size()), [])
|
||||
|
||||
def create_and_check_xxx_model(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = XxxModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||||
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
|
||||
sequence_output, pooled_output = model(input_ids)
|
||||
|
||||
result = {
|
||||
"sequence_output": sequence_output,
|
||||
"pooled_output": pooled_output,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
|
||||
)
|
||||
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
|
||||
|
||||
def create_and_check_xxx_for_masked_lm(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = XxxForMaskedLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
loss, prediction_scores = model(
|
||||
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels
|
||||
)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"prediction_scores": prediction_scores,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
|
||||
)
|
||||
self.check_loss_output(result)
|
||||
|
||||
def create_and_check_xxx_for_question_answering(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = XxxForQuestionAnswering(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
loss, start_logits, end_logits = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
start_positions=sequence_labels,
|
||||
end_positions=sequence_labels,
|
||||
)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"start_logits": start_logits,
|
||||
"end_logits": end_logits,
|
||||
}
|
||||
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
|
||||
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
|
||||
self.check_loss_output(result)
|
||||
|
||||
def create_and_check_xxx_for_sequence_classification(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
config.num_labels = self.num_labels
|
||||
model = XxxForSequenceClassification(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
loss, logits = model(
|
||||
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
|
||||
)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"logits": logits,
|
||||
}
|
||||
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
|
||||
self.check_loss_output(result)
|
||||
|
||||
def create_and_check_xxx_for_token_classification(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
config.num_labels = self.num_labels
|
||||
model = XxxForTokenClassification(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"logits": logits,
|
||||
}
|
||||
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
|
||||
self.check_loss_output(result)
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
) = config_and_inputs
|
||||
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_torch
|
||||
@ -44,204 +243,8 @@ class XxxModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
else ()
|
||||
)
|
||||
|
||||
class XxxModelTester(object):
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_token_type_ids=True,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=16,
|
||||
type_sequence_label_size=2,
|
||||
initializer_range=0.02,
|
||||
num_labels=3,
|
||||
num_choices=4,
|
||||
scope=None,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_input_mask = use_input_mask
|
||||
self.use_token_type_ids = use_token_type_ids
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_labels = num_labels
|
||||
self.num_choices = num_choices
|
||||
self.scope = scope
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
sequence_labels = None
|
||||
token_labels = None
|
||||
choice_labels = None
|
||||
if self.use_labels:
|
||||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||
|
||||
config = XxxConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
initializer_range=self.initializer_range,
|
||||
)
|
||||
|
||||
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
|
||||
def check_loss_output(self, result):
|
||||
self.parent.assertListEqual(list(result["loss"].size()), [])
|
||||
|
||||
def create_and_check_xxx_model(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = XxxModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||||
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
|
||||
sequence_output, pooled_output = model(input_ids)
|
||||
|
||||
result = {
|
||||
"sequence_output": sequence_output,
|
||||
"pooled_output": pooled_output,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
|
||||
)
|
||||
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
|
||||
|
||||
def create_and_check_xxx_for_masked_lm(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = XxxForMaskedLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
loss, prediction_scores = model(
|
||||
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels
|
||||
)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"prediction_scores": prediction_scores,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
|
||||
)
|
||||
self.check_loss_output(result)
|
||||
|
||||
def create_and_check_xxx_for_question_answering(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = XxxForQuestionAnswering(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
loss, start_logits, end_logits = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
start_positions=sequence_labels,
|
||||
end_positions=sequence_labels,
|
||||
)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"start_logits": start_logits,
|
||||
"end_logits": end_logits,
|
||||
}
|
||||
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
|
||||
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
|
||||
self.check_loss_output(result)
|
||||
|
||||
def create_and_check_xxx_for_sequence_classification(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
config.num_labels = self.num_labels
|
||||
model = XxxForSequenceClassification(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
loss, logits = model(
|
||||
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
|
||||
)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"logits": logits,
|
||||
}
|
||||
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
|
||||
self.check_loss_output(result)
|
||||
|
||||
def create_and_check_xxx_for_token_classification(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
config.num_labels = self.num_labels
|
||||
model = XxxForTokenClassification(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
loss, logits = model(
|
||||
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
|
||||
)
|
||||
result = {
|
||||
"loss": loss,
|
||||
"logits": logits,
|
||||
}
|
||||
self.parent.assertListEqual(
|
||||
list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
|
||||
)
|
||||
self.check_loss_output(result)
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
) = config_and_inputs
|
||||
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = XxxModelTest.XxxModelTester(self)
|
||||
self.model_tester = XxxModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=XxxConfig, hidden_size=37)
|
||||
|
||||
def test_config(self):
|
||||
@ -268,7 +271,50 @@ class XxxModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
self.model_tester.create_and_check_xxx_for_token_classification(*config_and_inputs)
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in XXX_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
model = XxxModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
|
||||
self.assertIsNotNone(model)
|
||||
def test_lm_outputs_same_as_reference_model(self):
|
||||
"""Write something that could help someone fixing this here."""
|
||||
checkpoint_path = "XXX/bart-large"
|
||||
model = self.big_model
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
checkpoint_path
|
||||
) # same with AutoTokenizer (see tokenization_auto.py). This is not mandatory
|
||||
# MODIFY THIS DEPENDING ON YOUR MODELS RELEVANT TASK.
|
||||
batch = tokenizer(["I went to the <mask> yesterday"]).to(torch_device)
|
||||
desired_mask_result = tokenizer.decode("store") # update this
|
||||
logits = model(**batch).logits
|
||||
masked_index = (batch.input_ids == self.tokenizer.mask_token_id).nonzero()
|
||||
assert model.num_parameters() == 175e9 # a joke
|
||||
mask_entry_logits = logits[0, masked_index.item(), :]
|
||||
probs = mask_entry_logits.softmax(dim=0)
|
||||
_, predictions = probs.topk(1)
|
||||
self.assertEqual(tokenizer.decode(predictions), desired_mask_result)
|
||||
|
||||
@cached_property
|
||||
def big_model(self):
|
||||
"""Cached property means this code will only be executed once."""
|
||||
checkpoint_path = "XXX/bart-large"
|
||||
model = AutoModelForMaskedLM.from_pretrained(checkpoint_path).to(
|
||||
torch_device
|
||||
) # test whether AutoModel can determine your model_class from checkpoint name
|
||||
if torch_device == "cuda":
|
||||
model.half()
|
||||
|
||||
# optional: do more testing! This will save you time later!
|
||||
@slow
|
||||
def test_that_XXX_can_be_used_in_a_pipeline(self):
|
||||
"""We can use self.big_model here without calling __init__ again."""
|
||||
pass
|
||||
|
||||
def test_XXX_loss_doesnt_change_if_you_add_padding(self):
|
||||
pass
|
||||
|
||||
def test_XXX_bad_args(self):
|
||||
pass
|
||||
|
||||
def test_XXX_backward_pass_reduces_loss(self):
|
||||
"""Test loss/gradients same as reference implementation, for example."""
|
||||
pass
|
||||
|
||||
@require_torch_and_cuda
|
||||
def test_large_inputs_in_fp16_dont_cause_overflow(self):
|
||||
pass
|
||||
|
@ -62,3 +62,7 @@ class XxxTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
tokens = tokenizer.tokenize("UNwant\u00E9d,running")
|
||||
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
|
||||
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
|
||||
|
||||
def test_special_tokens_as_you_expect(self):
|
||||
"""If you are training a seq2seq model that expects a decoder_prefix token make sure it is prepended to decoder_input_ids """
|
||||
pass
|
||||
|
Loading…
Reference in New Issue
Block a user