Improve global visibility on the run_squad script, remove unused files and fixes related to XLNet.
This commit is contained in:
LysandreJik 2019-12-05 16:01:51 -05:00
parent 9ecd83dace
commit e9217da5ff
5 changed files with 45 additions and 1387 deletions

View File

@ -27,8 +27,7 @@ import glob
import timeit import timeit
import numpy as np import numpy as np
import torch import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
TensorDataset)
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
try: try:
@ -48,14 +47,6 @@ from transformers import (WEIGHTS_NAME, BertConfig,
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
from utils_squad import (convert_examples_to_features as old_convert, read_squad_examples as old_read, RawResult, write_predictions,
RawResultExtended, write_predictions_extended)
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \ ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
@ -98,14 +89,16 @@ def train(args, train_dataset, model, tokenizer):
optimizer_grouped_parameters = [ optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
] ]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
if args.fp16: if args.fp16:
try: try:
from apex import amp from apex import amp
except ImportError: except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization) # multi-gpu training (should be after apex fp16 initialization)
@ -133,20 +126,26 @@ def train(args, train_dataset, model, tokenizer):
model.zero_grad() model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3) set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator: for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator): for step, batch in enumerate(epoch_iterator):
model.train() model.train()
batch = tuple(t.to(args.device) for t in batch) batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1], inputs = {
'start_positions': batch[3], 'input_ids': batch[0],
'end_positions': batch[4]} 'attention_mask': batch[1],
'start_positions': batch[3],
'end_positions': batch[4]
}
if args.model_type != 'distilbert': if args.model_type != 'distilbert':
inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2] inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
if args.model_type in ['xlnet', 'xlm']: if args.model_type in ['xlnet', 'xlm']:
inputs.update({'cls_index': batch[5], inputs.update({'cls_index': batch[5], 'p_mask': batch[6]})
'p_mask': batch[6]})
outputs = model(**inputs) outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc) loss = outputs[0] # model outputs are always tuple in transformers (see doc)
@ -173,8 +172,8 @@ def train(args, train_dataset, model, tokenizer):
model.zero_grad() model.zero_grad()
global_step += 1 global_step += 1
# Log metrics
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer) results = evaluate(args, model, tokenizer)
for key, value in results.items(): for key, value in results.items():
@ -183,8 +182,8 @@ def train(args, train_dataset, model, tokenizer):
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step) tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss logging_loss = tr_loss
# Save model checkpoint
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step)) output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir): if not os.path.exists(output_dir):
os.makedirs(output_dir) os.makedirs(output_dir)
@ -213,6 +212,7 @@ def evaluate(args, model, tokenizer, prefix=""):
os.makedirs(args.output_dir) os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly # Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset) eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
@ -225,11 +225,14 @@ def evaluate(args, model, tokenizer, prefix=""):
logger.info("***** Running evaluation {} *****".format(prefix)) logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset)) logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size) logger.info(" Batch size = %d", args.eval_batch_size)
all_results = [] all_results = []
start_time = timeit.default_timer() start_time = timeit.default_timer()
for batch in tqdm(eval_dataloader, desc="Evaluating"): for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval() model.eval()
batch = tuple(t.to(args.device) for t in batch) batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad(): with torch.no_grad():
inputs = { inputs = {
'input_ids': batch[0], 'input_ids': batch[0],
@ -238,10 +241,13 @@ def evaluate(args, model, tokenizer, prefix=""):
if args.model_type != 'distilbert': if args.model_type != 'distilbert':
inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids
example_indices = batch[3] example_indices = batch[3]
# XLNet and XLM use more arguments for their predictions
if args.model_type in ['xlnet', 'xlm']: if args.model_type in ['xlnet', 'xlm']:
inputs.update({'cls_index': batch[4], inputs.update({'cls_index': batch[4], 'p_mask': batch[5]})
'p_mask': batch[5]})
outputs = model(**inputs) outputs = model(**inputs)
for i, example_index in enumerate(example_indices): for i, example_index in enumerate(example_indices):
@ -250,11 +256,13 @@ def evaluate(args, model, tokenizer, prefix=""):
output = [to_list(output[i]) for output in outputs] output = [to_list(output[i]) for output in outputs]
# Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
# models only use two.
if len(output) >= 5: if len(output) >= 5:
start_logits = output[0] start_logits = output[0]
start_top_index = output[1] start_top_index = output[1]
end_logits = output[2] end_logits = output[2]
end_top_index = output[3], end_top_index = output[3]
cls_logits = output[4] cls_logits = output[4]
result = SquadResult( result = SquadResult(
@ -278,16 +286,17 @@ def evaluate(args, model, tokenizer, prefix=""):
# Compute predictions # Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix)) output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix)) output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
if args.version_2_with_negative: if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix)) output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
else: else:
output_null_log_odds_file = None output_null_log_odds_file = None
# XLNet and XLM use a more complex post-processing procedure
if args.model_type in ['xlnet', 'xlm']: if args.model_type in ['xlnet', 'xlm']:
# XLNet uses a more complex post-processing procedure
predictions = compute_predictions_log_probs(examples, features, all_results, args.n_best_size, predictions = compute_predictions_log_probs(examples, features, all_results, args.n_best_size,
args.max_answer_length, output_prediction_file, args.max_answer_length, output_prediction_file,
output_nbest_file, output_null_log_odds_file, args.predict_file, output_nbest_file, output_null_log_odds_file,
model.config.start_n_top, model.config.end_n_top, model.config.start_n_top, model.config.end_n_top,
args.version_2_with_negative, tokenizer, args.verbose_logging) args.version_2_with_negative, tokenizer, args.verbose_logging)
else: else:
@ -296,6 +305,7 @@ def evaluate(args, model, tokenizer, prefix=""):
output_nbest_file, output_null_log_odds_file, args.verbose_logging, output_nbest_file, output_null_log_odds_file, args.verbose_logging,
args.version_2_with_negative, args.null_score_diff_threshold) args.version_2_with_negative, args.null_score_diff_threshold)
# Compute the F1 and exact scores.
results = squad_evaluate(examples, predictions) results = squad_evaluate(examples, predictions)
return results return results
@ -308,7 +318,10 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal
cached_features_file = os.path.join(input_dir, 'cached_{}_{}_{}'.format( cached_features_file = os.path.join(input_dir, 'cached_{}_{}_{}'.format(
'dev' if evaluate else 'train', 'dev' if evaluate else 'train',
list(filter(None, args.model_name_or_path.split('/'))).pop(), list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length))) str(args.max_seq_length))
)
# Init features and dataset from cache if it exists
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples: if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
logger.info("Loading features from cached file %s", cached_features_file) logger.info("Loading features from cached file %s", cached_features_file)
features_and_dataset = torch.load(cached_features_file) features_and_dataset = torch.load(cached_features_file)
@ -341,7 +354,6 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal
return_dataset='pt' return_dataset='pt'
) )
if args.local_rank in [-1, 0]: if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file) logger.info("Saving features into cached file %s", cached_features_file)
torch.save({"features": features, "dataset": dataset}, cached_features_file) torch.save({"features": features, "dataset": dataset}, cached_features_file)
@ -452,6 +464,11 @@ def main():
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args() args = parser.parse_args()
args.predict_file = os.path.join(args.output_dir, 'predictions_{}_{}.txt'.format(
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length))
)
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

File diff suppressed because it is too large Load Diff

View File

@ -1,330 +0,0 @@
""" Official evaluation script for SQuAD version 2.0.
Modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0
In addition to basic functionality, we also compute additional statistics and
plot precision-recall curves if an additional na_prob.json file is provided.
This file is expected to map question ID's to the model's predicted probability
that a question is unanswerable.
"""
import argparse
import collections
import json
import numpy as np
import os
import re
import string
import sys
class EVAL_OPTS():
def __init__(self, data_file, pred_file, out_file="",
na_prob_file="na_prob.json", na_prob_thresh=1.0,
out_image_dir=None, verbose=False):
self.data_file = data_file
self.pred_file = pred_file
self.out_file = out_file
self.na_prob_file = na_prob_file
self.na_prob_thresh = na_prob_thresh
self.out_image_dir = out_image_dir
self.verbose = verbose
OPTS = None
def parse_args():
parser = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.')
parser.add_argument('data_file', metavar='data.json', help='Input data JSON file.')
parser.add_argument('pred_file', metavar='pred.json', help='Model predictions.')
parser.add_argument('--out-file', '-o', metavar='eval.json',
help='Write accuracy metrics to file (default is stdout).')
parser.add_argument('--na-prob-file', '-n', metavar='na_prob.json',
help='Model estimates of probability of no answer.')
parser.add_argument('--na-prob-thresh', '-t', type=float, default=1.0,
help='Predict "" if no-answer probability exceeds this (default = 1.0).')
parser.add_argument('--out-image-dir', '-p', metavar='out_images', default=None,
help='Save precision-recall curves to directory.')
parser.add_argument('--verbose', '-v', action='store_true')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def make_qid_to_has_ans(dataset):
qid_to_has_ans = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid_to_has_ans[qa['id']] = bool(qa['answers'])
return qid_to_has_ans
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s: return []
return normalize_answer(s).split()
def compute_exact(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def get_raw_scores(dataset, preds):
exact_scores = {}
f1_scores = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid = qa['id']
gold_answers = [a['text'] for a in qa['answers']
if normalize_answer(a['text'])]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
gold_answers = ['']
if qid not in preds:
print('Missing prediction for %s' % qid)
continue
a_pred = preds[qid]
# Take max over all gold answers
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
return exact_scores, f1_scores
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
new_scores = {}
for qid, s in scores.items():
pred_na = na_probs[qid] > na_prob_thresh
if pred_na:
new_scores[qid] = float(not qid_to_has_ans[qid])
else:
new_scores[qid] = s
return new_scores
def make_eval_dict(exact_scores, f1_scores, qid_list=None):
if not qid_list:
total = len(exact_scores)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores.values()) / total),
('f1', 100.0 * sum(f1_scores.values()) / total),
('total', total),
])
else:
total = len(qid_list)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
('total', total),
])
def merge_eval(main_eval, new_eval, prefix):
for k in new_eval:
main_eval['%s_%s' % (prefix, k)] = new_eval[k]
def plot_pr_curve(precisions, recalls, out_image, title):
plt.step(recalls, precisions, color='b', alpha=0.2, where='post')
plt.fill_between(recalls, precisions, step='post', alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.title(title)
plt.savefig(out_image)
plt.clf()
def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=None, title=None):
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
true_pos = 0.0
cur_p = 1.0
cur_r = 0.0
precisions = [1.0]
recalls = [0.0]
avg_prec = 0.0
for i, qid in enumerate(qid_list):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
cur_p = true_pos / float(i+1)
cur_r = true_pos / float(num_true_pos)
if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(cur_p)
recalls.append(cur_r)
if out_image:
plot_pr_curve(precisions, recalls, out_image, title)
return {'ap': 100.0 * avg_prec}
def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, out_image_dir):
if out_image_dir and not os.path.exists(out_image_dir):
os.makedirs(out_image_dir)
num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
if num_true_pos == 0:
return
pr_exact = make_precision_recall_eval(
exact_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_exact.png'),
title='Precision-Recall curve for Exact Match score')
pr_f1 = make_precision_recall_eval(
f1_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_f1.png'),
title='Precision-Recall curve for F1 score')
oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
pr_oracle = make_precision_recall_eval(
oracle_scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_oracle.png'),
title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)')
merge_eval(main_eval, pr_exact, 'pr_exact')
merge_eval(main_eval, pr_f1, 'pr_f1')
merge_eval(main_eval, pr_oracle, 'pr_oracle')
def histogram_na_prob(na_probs, qid_list, image_dir, name):
if not qid_list:
return
x = [na_probs[k] for k in qid_list]
weights = np.ones_like(x) / float(len(x))
plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0))
plt.xlabel('Model probability of no-answer')
plt.ylabel('Proportion of dataset')
plt.title('Histogram of no-answer probability: %s' % name)
plt.savefig(os.path.join(image_dir, 'na_prob_hist_%s.png' % name))
plt.clf()
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores: continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
return 100.0 * best_score / len(scores), best_thresh
def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores: continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
has_ans_score, has_ans_cnt = 0, 0
for qid in qid_list:
if not qid_to_has_ans[qid]: continue
has_ans_cnt += 1
if qid not in scores: continue
has_ans_score += scores[qid]
return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval['best_exact'] = best_exact
main_eval['best_exact_thresh'] = exact_thresh
main_eval['best_f1'] = best_f1
main_eval['best_f1_thresh'] = f1_thresh
def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval['best_exact'] = best_exact
main_eval['best_exact_thresh'] = exact_thresh
main_eval['best_f1'] = best_f1
main_eval['best_f1_thresh'] = f1_thresh
main_eval['has_ans_exact'] = has_ans_exact
main_eval['has_ans_f1'] = has_ans_f1
def main(OPTS):
with open(OPTS.data_file) as f:
dataset_json = json.load(f)
dataset = dataset_json['data']
with open(OPTS.pred_file) as f:
preds = json.load(f)
if OPTS.na_prob_file:
with open(OPTS.na_prob_file) as f:
na_probs = json.load(f)
else:
na_probs = {k: 0.0 for k in preds}
qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact_raw, f1_raw = get_raw_scores(dataset, preds)
exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
out_eval = make_eval_dict(exact_thresh, f1_thresh)
if has_ans_qids:
has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids)
merge_eval(out_eval, has_ans_eval, 'HasAns')
if no_ans_qids:
no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
merge_eval(out_eval, no_ans_eval, 'NoAns')
if OPTS.na_prob_file:
find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans)
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, OPTS.out_image_dir)
histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, 'hasAns')
histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, 'noAns')
if OPTS.out_file:
with open(OPTS.out_file, 'w') as f:
json.dump(out_eval, f)
else:
print(json.dumps(out_eval, indent=2))
return out_eval
if __name__ == '__main__':
OPTS = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main(OPTS)

View File

@ -578,7 +578,6 @@ def compute_predictions_log_probs(
output_prediction_file, output_prediction_file,
output_nbest_file, output_nbest_file,
output_null_log_odds_file, output_null_log_odds_file,
orig_data_file,
start_n_top, start_n_top,
end_n_top, end_n_top,
version_2_with_negative, version_2_with_negative,
@ -756,15 +755,4 @@ def compute_predictions_log_probs(
with open(output_null_log_odds_file, "w") as writer: with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
with open(orig_data_file, "r", encoding='utf-8') as reader: return all_predictions
orig_data = json.load(reader)["data"]
qid_to_has_ans = make_qid_to_has_ans(orig_data)
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact_raw, f1_raw = get_raw_scores(orig_data, all_predictions)
out_eval = {}
find_all_best_thresh_v2(out_eval, all_predictions, exact_raw, f1_raw, scores_diff_json, qid_to_has_ans)
return out_eval

View File

@ -9,7 +9,7 @@ from ...tokenization_bert import BasicTokenizer, whitespace_tokenize
from .utils import DataProcessor, InputExample, InputFeatures from .utils import DataProcessor, InputExample, InputFeatures
from ...file_utils import is_tf_available, is_torch_available from ...file_utils import is_tf_available, is_torch_available
if is_torch_available: if is_torch_available():
import torch import torch
from torch.utils.data import TensorDataset from torch.utils.data import TensorDataset