mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
Patch evaluation for impossible values + cleanup
This commit is contained in:
parent
ce158a076f
commit
9ecd83dace
@ -55,7 +55,7 @@ Example usage
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
An example using these processors is given in the
|
||||
`run_glue.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_glue.py>`__ script.
|
||||
`run_glue.py <https://github.com/huggingface/transformers/blob/master/examples/run_glue.py>`__ script.
|
||||
|
||||
|
||||
|
||||
@ -132,4 +132,4 @@ Example::
|
||||
|
||||
|
||||
Another example using these processors is given in the
|
||||
`run_squad.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_squad.py>`__ script.
|
||||
`run_squad.py <https://github.com/huggingface/transformers/blob/master/examples/run_squad.py>`__ script.
|
@ -311,7 +311,8 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal
|
||||
str(args.max_seq_length)))
|
||||
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
|
||||
logger.info("Loading features from cached file %s", cached_features_file)
|
||||
features = torch.load(cached_features_file)
|
||||
features_and_dataset = torch.load(cached_features_file)
|
||||
features, dataset = features_and_dataset["features"], features_and_dataset["dataset"]
|
||||
else:
|
||||
logger.info("Creating features from dataset file at %s", input_dir)
|
||||
|
||||
@ -330,40 +331,24 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal
|
||||
processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
|
||||
examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
|
||||
|
||||
features = squad_convert_examples_to_features(
|
||||
features, dataset = squad_convert_examples_to_features(
|
||||
examples=examples,
|
||||
tokenizer=tokenizer,
|
||||
max_seq_length=args.max_seq_length,
|
||||
doc_stride=args.doc_stride,
|
||||
max_query_length=args.max_query_length,
|
||||
is_training=not evaluate,
|
||||
return_dataset='pt'
|
||||
)
|
||||
|
||||
|
||||
if args.local_rank in [-1, 0]:
|
||||
logger.info("Saving features into cached file %s", cached_features_file)
|
||||
torch.save(features, cached_features_file)
|
||||
torch.save({"features": features, "dataset": dataset}, cached_features_file)
|
||||
|
||||
if args.local_rank == 0 and not evaluate:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
|
||||
|
||||
# Convert to Tensors and build dataset
|
||||
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
|
||||
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
|
||||
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
|
||||
if evaluate:
|
||||
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
||||
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
|
||||
all_example_index, all_cls_index, all_p_mask)
|
||||
else:
|
||||
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
|
||||
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
|
||||
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
|
||||
all_start_positions, all_end_positions,
|
||||
all_cls_index, all_p_mask)
|
||||
|
||||
if output_examples:
|
||||
return dataset, examples, features
|
||||
return dataset
|
||||
|
@ -312,7 +312,7 @@ class SquadProcessor(DataProcessor):
|
||||
if not evaluate:
|
||||
answer = tensor_dict['answers']['text'][0].numpy().decode('utf-8')
|
||||
answer_start = tensor_dict['answers']['answer_start'][0].numpy()
|
||||
answers = None
|
||||
answers = []
|
||||
else:
|
||||
answers = [{
|
||||
"answer_start": start.numpy(),
|
||||
@ -408,7 +408,7 @@ class SquadProcessor(DataProcessor):
|
||||
question_text = qa["question"]
|
||||
start_position_character = None
|
||||
answer_text = None
|
||||
answers = None
|
||||
answers = []
|
||||
|
||||
if "is_impossible" in qa:
|
||||
is_impossible = qa["is_impossible"]
|
||||
@ -469,7 +469,7 @@ class SquadExample(object):
|
||||
answer_text,
|
||||
start_position_character,
|
||||
title,
|
||||
answers=None,
|
||||
answers=[],
|
||||
is_impossible=False):
|
||||
self.qas_id = qas_id
|
||||
self.question_text = question_text
|
||||
|
@ -194,7 +194,7 @@ class PreTrainedTokenizer(object):
|
||||
|
||||
@property
|
||||
def pad_token_type_id(self):
|
||||
""" Id of the padding token in the vocabulary. Log an error if used while not having been set. """
|
||||
""" Id of the padding token type in the vocabulary."""
|
||||
return self._pad_token_type_id
|
||||
|
||||
@property
|
||||
|
Loading…
Reference in New Issue
Block a user