mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-30 17:52:35 +06:00
Create README.md
This commit is contained in:
parent
5c1d5ea667
commit
9f1544b9e0
25
model_cards/facebook/rag-token-nq/README.md
Normal file
25
model_cards/facebook/rag-token-nq/README.md
Normal file
@ -0,0 +1,25 @@
|
||||
## RAG
|
||||
|
||||
This is the RAG-Token Model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf)
|
||||
by Aleksandra Piktus et al.
|
||||
|
||||
## Usage:
|
||||
|
||||
```python
|
||||
|
||||
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
|
||||
|
||||
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
||||
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
|
||||
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
|
||||
|
||||
input_dict = tokenizer.prepare_seq2seq_batch("How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="pt")
|
||||
outputs = model(input_ids=input_dict["input_ids"], labels=input_dict["labels"])
|
||||
|
||||
# outputs.loss should give 76.1230
|
||||
|
||||
generated = model.generate(input_ids=input_dict["input_ids"], num_beams=4)
|
||||
generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
|
||||
|
||||
# generated_string should give 270,000 -> not quite correct the answer, but it also only uses a dummy index
|
||||
```
|
Loading…
Reference in New Issue
Block a user