diff --git a/model_cards/facebook/rag-token-nq/README.md b/model_cards/facebook/rag-token-nq/README.md new file mode 100644 index 00000000000..683414e4f2b --- /dev/null +++ b/model_cards/facebook/rag-token-nq/README.md @@ -0,0 +1,25 @@ +## RAG + +This is the RAG-Token Model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf) +by Aleksandra Piktus et al. + +## Usage: + +```python + +from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration + +tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") +retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) +model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) + +input_dict = tokenizer.prepare_seq2seq_batch("How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="pt") +outputs = model(input_ids=input_dict["input_ids"], labels=input_dict["labels"]) + +# outputs.loss should give 76.1230 + +generated = model.generate(input_ids=input_dict["input_ids"], num_beams=4) +generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) + +# generated_string should give 270,000 -> not quite correct the answer, but it also only uses a dummy index +```