mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
added type hints for blenderbot and blenderbot_small (#16307)
This commit is contained in:
parent
e226a24f84
commit
96cd5bcbb9
@ -1119,22 +1119,22 @@ class BlenderbotModel(BlenderbotPreTrainedModel):
|
||||
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
encoder_outputs=None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
decoder_input_ids: Optional[torch.LongTensor] = None,
|
||||
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
decoder_head_mask: Optional[torch.Tensor] = None,
|
||||
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||||
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
@ -1275,23 +1275,23 @@ class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel):
|
||||
@add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
encoder_outputs=None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
labels=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
decoder_input_ids: Optional[torch.LongTensor] = None,
|
||||
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
decoder_head_mask: Optional[torch.Tensor] = None,
|
||||
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||||
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
|
@ -18,7 +18,7 @@
|
||||
import os
|
||||
import random
|
||||
import warnings
|
||||
from typing import Optional, Tuple, Union
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
@ -1137,24 +1137,24 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
|
||||
)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
input_ids: Optional[tf.Tensor] = None,
|
||||
attention_mask: Optional[tf.Tensor] = None,
|
||||
decoder_input_ids: Optional[tf.Tensor] = None,
|
||||
decoder_attention_mask: Optional[tf.Tensor] = None,
|
||||
head_mask: Optional[tf.Tensor] = None,
|
||||
decoder_head_mask: Optional[tf.Tensor] = None,
|
||||
cross_attn_head_mask: Optional[tf.Tensor] = None,
|
||||
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
training=False,
|
||||
past_key_values: Optional[List[tf.Tensor]] = None,
|
||||
inputs_embeds: Optional[tf.Tensor] = None,
|
||||
decoder_inputs_embeds: Optional[tf.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
training: Optional[bool] = False,
|
||||
**kwargs
|
||||
):
|
||||
) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
@ -1253,25 +1253,25 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
|
||||
@add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
encoder_outputs: Optional[TFBaseModelOutput] = None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
training=False,
|
||||
input_ids: Optional[tf.Tensor] = None,
|
||||
attention_mask: Optional[tf.Tensor] = None,
|
||||
decoder_input_ids: Optional[tf.Tensor] = None,
|
||||
decoder_attention_mask: Optional[tf.Tensor] = None,
|
||||
head_mask: Optional[tf.Tensor] = None,
|
||||
decoder_head_mask: Optional[tf.Tensor] = None,
|
||||
cross_attn_head_mask: Optional[tf.Tensor] = None,
|
||||
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
||||
past_key_values: Optional[List[tf.Tensor]] = None,
|
||||
inputs_embeds: Optional[tf.Tensor] = None,
|
||||
decoder_inputs_embeds: Optional[tf.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[tf.Tensor] = None,
|
||||
training: Optional[bool] = False,
|
||||
**kwargs,
|
||||
):
|
||||
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
|
||||
r"""
|
||||
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
|
@ -1102,22 +1102,22 @@ class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
|
||||
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
encoder_outputs=None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
decoder_input_ids: Optional[torch.LongTensor] = None,
|
||||
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
decoder_head_mask: Optional[torch.Tensor] = None,
|
||||
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||||
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
@ -1246,23 +1246,23 @@ class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel):
|
||||
@add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
encoder_outputs=None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
labels=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
decoder_input_ids: Optional[torch.LongTensor] = None,
|
||||
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
decoder_head_mask: Optional[torch.Tensor] = None,
|
||||
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||||
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
|
@ -16,7 +16,7 @@
|
||||
|
||||
|
||||
import random
|
||||
from typing import Optional, Tuple, Union
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
@ -1132,24 +1132,24 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
|
||||
)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
input_ids: Optional[tf.Tensor] = None,
|
||||
attention_mask: Optional[tf.Tensor] = None,
|
||||
decoder_input_ids: Optional[tf.Tensor] = None,
|
||||
decoder_attention_mask: Optional[tf.Tensor] = None,
|
||||
head_mask: Optional[tf.Tensor] = None,
|
||||
decoder_head_mask: Optional[tf.Tensor] = None,
|
||||
cross_attn_head_mask: Optional[tf.Tensor] = None,
|
||||
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
training=False,
|
||||
past_key_values: Optional[List[tf.Tensor]] = None,
|
||||
inputs_embeds: Optional[tf.Tensor] = None,
|
||||
decoder_inputs_embeds: Optional[tf.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
training: Optional[bool] = False,
|
||||
**kwargs
|
||||
):
|
||||
) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
|
||||
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
@ -1236,25 +1236,25 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
|
||||
@add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
|
||||
def call(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
decoder_input_ids=None,
|
||||
decoder_attention_mask=None,
|
||||
head_mask=None,
|
||||
decoder_head_mask=None,
|
||||
cross_attn_head_mask=None,
|
||||
input_ids: Optional[tf.Tensor] = None,
|
||||
attention_mask: Optional[tf.Tensor] = None,
|
||||
decoder_input_ids: Optional[tf.Tensor] = None,
|
||||
decoder_attention_mask: Optional[tf.Tensor] = None,
|
||||
head_mask: Optional[tf.Tensor] = None,
|
||||
decoder_head_mask: Optional[tf.Tensor] = None,
|
||||
cross_attn_head_mask: Optional[tf.Tensor] = None,
|
||||
encoder_outputs: Optional[TFBaseModelOutput] = None,
|
||||
past_key_values=None,
|
||||
inputs_embeds=None,
|
||||
decoder_inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
labels=None,
|
||||
training=False,
|
||||
past_key_values: Optional[List[tf.Tensor]] = None,
|
||||
inputs_embeds: Optional[tf.Tensor] = None,
|
||||
decoder_inputs_embeds: Optional[tf.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
labels: Optional[tf.Tensor] = None,
|
||||
training: Optional[bool] = False,
|
||||
**kwargs,
|
||||
):
|
||||
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
|
||||
r"""
|
||||
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
|
Loading…
Reference in New Issue
Block a user