diff --git a/src/transformers/models/blenderbot/modeling_blenderbot.py b/src/transformers/models/blenderbot/modeling_blenderbot.py index 76fb22e53d9..cdaa21521c5 100755 --- a/src/transformers/models/blenderbot/modeling_blenderbot.py +++ b/src/transformers/models/blenderbot/modeling_blenderbot.py @@ -1119,22 +1119,22 @@ class BlenderbotModel(BlenderbotPreTrainedModel): @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, - input_ids=None, - attention_mask=None, - decoder_input_ids=None, - decoder_attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, - encoder_outputs=None, - past_key_values=None, - inputs_embeds=None, - decoder_inputs_embeds=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: @@ -1275,23 +1275,23 @@ class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel): @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE) def forward( self, - input_ids=None, - attention_mask=None, - decoder_input_ids=None, - decoder_attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, - encoder_outputs=None, - past_key_values=None, - inputs_embeds=None, - decoder_inputs_embeds=None, - labels=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., diff --git a/src/transformers/models/blenderbot/modeling_tf_blenderbot.py b/src/transformers/models/blenderbot/modeling_tf_blenderbot.py index e4d992cca9e..34a5f972abc 100644 --- a/src/transformers/models/blenderbot/modeling_tf_blenderbot.py +++ b/src/transformers/models/blenderbot/modeling_tf_blenderbot.py @@ -18,7 +18,7 @@ import os import random import warnings -from typing import Optional, Tuple, Union +from typing import List, Optional, Tuple, Union import tensorflow as tf @@ -1137,24 +1137,24 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel): ) def call( self, - input_ids=None, - attention_mask=None, - decoder_input_ids=None, - decoder_attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, + input_ids: Optional[tf.Tensor] = None, + attention_mask: Optional[tf.Tensor] = None, + decoder_input_ids: Optional[tf.Tensor] = None, + decoder_attention_mask: Optional[tf.Tensor] = None, + head_mask: Optional[tf.Tensor] = None, + decoder_head_mask: Optional[tf.Tensor] = None, + cross_attn_head_mask: Optional[tf.Tensor] = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, - past_key_values=None, - inputs_embeds=None, - decoder_inputs_embeds=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - training=False, + past_key_values: Optional[List[tf.Tensor]] = None, + inputs_embeds: Optional[tf.Tensor] = None, + decoder_inputs_embeds: Optional[tf.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, **kwargs - ): + ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, @@ -1253,25 +1253,25 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE) def call( self, - input_ids=None, - attention_mask=None, - decoder_input_ids=None, - decoder_attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, - encoder_outputs: Optional[TFBaseModelOutput] = None, - past_key_values=None, - inputs_embeds=None, - decoder_inputs_embeds=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - labels=None, - training=False, + input_ids: Optional[tf.Tensor] = None, + attention_mask: Optional[tf.Tensor] = None, + decoder_input_ids: Optional[tf.Tensor] = None, + decoder_attention_mask: Optional[tf.Tensor] = None, + head_mask: Optional[tf.Tensor] = None, + decoder_head_mask: Optional[tf.Tensor] = None, + cross_attn_head_mask: Optional[tf.Tensor] = None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values: Optional[List[tf.Tensor]] = None, + inputs_embeds: Optional[tf.Tensor] = None, + decoder_inputs_embeds: Optional[tf.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[tf.Tensor] = None, + training: Optional[bool] = False, **kwargs, - ): + ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: r""" labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., diff --git a/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py b/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py index 6c341c4cb86..8a6c863e633 100755 --- a/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py +++ b/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py @@ -1102,22 +1102,22 @@ class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel): @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, - input_ids=None, - attention_mask=None, - decoder_input_ids=None, - decoder_attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, - encoder_outputs=None, - past_key_values=None, - inputs_embeds=None, - decoder_inputs_embeds=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: @@ -1246,23 +1246,23 @@ class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel): @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) def forward( self, - input_ids=None, - attention_mask=None, - decoder_input_ids=None, - decoder_attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, - encoder_outputs=None, - past_key_values=None, - inputs_embeds=None, - decoder_inputs_embeds=None, - labels=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., diff --git a/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py b/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py index bb2149c8acd..69d6233f025 100644 --- a/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py +++ b/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py @@ -16,7 +16,7 @@ import random -from typing import Optional, Tuple, Union +from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf @@ -1132,24 +1132,24 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel): ) def call( self, - input_ids=None, - attention_mask=None, - decoder_input_ids=None, - decoder_attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, + input_ids: Optional[tf.Tensor] = None, + attention_mask: Optional[tf.Tensor] = None, + decoder_input_ids: Optional[tf.Tensor] = None, + decoder_attention_mask: Optional[tf.Tensor] = None, + head_mask: Optional[tf.Tensor] = None, + decoder_head_mask: Optional[tf.Tensor] = None, + cross_attn_head_mask: Optional[tf.Tensor] = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, - past_key_values=None, - inputs_embeds=None, - decoder_inputs_embeds=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - training=False, + past_key_values: Optional[List[tf.Tensor]] = None, + inputs_embeds: Optional[tf.Tensor] = None, + decoder_inputs_embeds: Optional[tf.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, **kwargs - ): + ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: outputs = self.model( input_ids=input_ids, @@ -1236,25 +1236,25 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) def call( self, - input_ids=None, - attention_mask=None, - decoder_input_ids=None, - decoder_attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, + input_ids: Optional[tf.Tensor] = None, + attention_mask: Optional[tf.Tensor] = None, + decoder_input_ids: Optional[tf.Tensor] = None, + decoder_attention_mask: Optional[tf.Tensor] = None, + head_mask: Optional[tf.Tensor] = None, + decoder_head_mask: Optional[tf.Tensor] = None, + cross_attn_head_mask: Optional[tf.Tensor] = None, encoder_outputs: Optional[TFBaseModelOutput] = None, - past_key_values=None, - inputs_embeds=None, - decoder_inputs_embeds=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - labels=None, - training=False, + past_key_values: Optional[List[tf.Tensor]] = None, + inputs_embeds: Optional[tf.Tensor] = None, + decoder_inputs_embeds: Optional[tf.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[tf.Tensor] = None, + training: Optional[bool] = False, **kwargs, - ): + ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: r""" labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,