Add test_image_processing_common.py (#20785)

* Add test_image_processing_common.py

* Fix typo

* Update imports and test fetcher

* Revert but keep test fetcher update

* Fix imports

* Fix all imports

* Formatting fix

* Update tests/test_image_processing_common.py
This commit is contained in:
amyeroberts 2023-01-23 13:48:30 +00:00 committed by GitHub
parent 96b2b2de12
commit 66459ce319
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
30 changed files with 367 additions and 168 deletions

View File

@ -22,7 +22,8 @@ from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -23,7 +23,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -23,7 +23,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -23,7 +23,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -23,7 +23,8 @@ from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -23,7 +23,8 @@ from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -26,7 +26,7 @@ from huggingface_hub import hf_hub_download
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import prepare_image_inputs from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -20,7 +20,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -22,7 +22,8 @@ from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_video_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_video_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -21,7 +21,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -23,7 +23,8 @@ import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
if is_torch_available(): if is_torch_available():

View File

@ -25,16 +25,7 @@ from pathlib import Path
from huggingface_hub import HfFolder, delete_repo, set_access_token from huggingface_hub import HfFolder, delete_repo, set_access_token
from requests.exceptions import HTTPError from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
from transformers.testing_utils import ( from transformers.testing_utils import TOKEN, USER, check_json_file_has_correct_format, get_tests_dir, is_staging_test
TOKEN,
USER,
check_json_file_has_correct_format,
get_tests_dir,
is_staging_test,
require_torch,
require_vision,
)
from transformers.utils import is_torch_available, is_vision_available
sys.path.append(str(Path(__file__).parent.parent / "utils")) sys.path.append(str(Path(__file__).parent.parent / "utils"))
@ -42,105 +33,9 @@ sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
if is_torch_available():
import numpy as np
import torch
if is_vision_available():
from PIL import Image
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures") SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
One can specify whether the images are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
image_inputs = []
for i in range(feature_extract_tester.batch_size):
if equal_resolution:
width = height = feature_extract_tester.max_resolution
else:
# To avoid getting image width/height 0
min_resolution = feature_extract_tester.min_resolution
if getattr(feature_extract_tester, "size_divisor", None):
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
min_resolution = max(feature_extract_tester.size_divisor, min_resolution)
width, height = np.random.choice(np.arange(min_resolution, feature_extract_tester.max_resolution), 2)
image_inputs.append(
np.random.randint(
255,
size=(
feature_extract_tester.num_channels,
width,
height,
),
dtype=np.uint8,
)
)
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(image) for image in image_inputs]
return image_inputs
def prepare_video(feature_extract_tester, width=10, height=10, numpify=False, torchify=False):
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
video = []
for i in range(feature_extract_tester.num_frames):
video.append(np.random.randint(255, size=(feature_extract_tester.num_channels, width, height), dtype=np.uint8))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]
if torchify:
video = [torch.from_numpy(frame) for frame in video]
return video
def prepare_video_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.
One can specify whether the videos are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
video_inputs = []
for i in range(feature_extract_tester.batch_size):
if equal_resolution:
width = height = feature_extract_tester.max_resolution
else:
width, height = np.random.choice(
np.arange(feature_extract_tester.min_resolution, feature_extract_tester.max_resolution), 2
)
video = prepare_video(
feature_extract_tester=feature_extract_tester,
width=width,
height=height,
numpify=numpify,
torchify=torchify,
)
video_inputs.append(video)
return video_inputs
class FeatureExtractionSavingTestMixin: class FeatureExtractionSavingTestMixin:
test_cast_dtype = None test_cast_dtype = None
@ -174,41 +69,6 @@ class FeatureExtractionSavingTestMixin:
feat_extract = self.feature_extraction_class() feat_extract = self.feature_extraction_class()
self.assertIsNotNone(feat_extract) self.assertIsNotNone(feat_extract)
@require_torch
@require_vision
def test_cast_dtype_device(self):
if self.test_cast_dtype is not None:
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
encoding = feature_extractor(image_inputs, return_tensors="pt")
# for layoutLM compatiblity
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float32)
encoding = feature_extractor(image_inputs, return_tensors="pt").to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
encoding = feature_extractor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)
with self.assertRaises(TypeError):
_ = feature_extractor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
# Try with text + image feature
encoding = feature_extractor(image_inputs, return_tensors="pt")
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
encoding = encoding.to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
self.assertEqual(encoding.input_ids.dtype, torch.long)
class FeatureExtractorUtilTester(unittest.TestCase): class FeatureExtractorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self): def test_cached_files_are_used_when_internet_is_down(self):

View File

@ -0,0 +1,312 @@
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo, set_access_token
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import (
TOKEN,
USER,
check_json_file_has_correct_format,
get_tests_dir,
is_staging_test,
require_torch,
require_vision,
)
from transformers.utils import is_torch_available, is_vision_available
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
if is_torch_available():
import numpy as np
import torch
if is_vision_available():
from PIL import Image
SAMPLE_IMAGE_PROCESSING_CONFIG_DIR = get_tests_dir("fixtures")
def prepare_image_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
One can specify whether the images are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
image_inputs = []
for i in range(image_processor_tester.batch_size):
if equal_resolution:
width = height = image_processor_tester.max_resolution
else:
# To avoid getting image width/height 0
min_resolution = image_processor_tester.min_resolution
if getattr(image_processor_tester, "size_divisor", None):
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
min_resolution = max(image_processor_tester.size_divisor, min_resolution)
width, height = np.random.choice(np.arange(min_resolution, image_processor_tester.max_resolution), 2)
image_inputs.append(
np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8)
)
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(image) for image in image_inputs]
return image_inputs
def prepare_video(image_processor_tester, width=10, height=10, numpify=False, torchify=False):
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
video = []
for i in range(image_processor_tester.num_frames):
video.append(np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]
if torchify:
video = [torch.from_numpy(frame) for frame in video]
return video
def prepare_video_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.
One can specify whether the videos are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
video_inputs = []
for i in range(image_processor_tester.batch_size):
if equal_resolution:
width = height = image_processor_tester.max_resolution
else:
width, height = np.random.choice(
np.arange(image_processor_tester.min_resolution, image_processor_tester.max_resolution), 2
)
video = prepare_video(
image_processor_tester=image_processor_tester,
width=width,
height=height,
numpify=numpify,
torchify=torchify,
)
video_inputs.append(video)
return video_inputs
class ImageProcessingSavingTestMixin:
test_cast_dtype = None
def test_image_processor_to_json_string(self):
image_processor = self.image_processing_class(**self.image_processor_dict)
obj = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
self.assertEqual(obj[key], value)
def test_image_processor_to_json_file(self):
image_processor_first = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "image_processor.json")
image_processor_first.to_json_file(json_file_path)
image_processor_second = self.image_processing_class.from_json_file(json_file_path)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_image_processor_from_and_save_pretrained(self):
image_processor_first = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_init_without_params(self):
image_processor = self.image_processing_class()
self.assertIsNotNone(image_processor)
@require_torch
@require_vision
def test_cast_dtype_device(self):
if self.test_cast_dtype is not None:
# Initialize image_processor
image_processor = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
encoding = image_processor(image_inputs, return_tensors="pt")
# for layoutLM compatiblity
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float32)
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)
with self.assertRaises(TypeError):
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
# Try with text + image feature
encoding = image_processor(image_inputs, return_tensors="pt")
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
encoding = encoding.to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
self.assertEqual(encoding.input_ids.dtype, torch.long)
class ImageProcessorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.request", return_value=response_mock) as mock_head:
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = ViTImageProcessor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json"
)
@is_staging_test
class ImageProcessorPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
set_access_token(TOKEN)
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-image-processor")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-image-processor")
except HTTPError:
pass
def test_push_to_hub(self):
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("test-image-processor", use_auth_token=self._token)
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-image-processor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
tmp_dir, repo_id="test-image-processor", push_to_hub=True, use_auth_token=self._token
)
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
def test_push_to_hub_in_organization(self):
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("valid_org/test-image-processor", use_auth_token=self._token)
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-image-processor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
tmp_dir, repo_id="valid_org/test-image-processor-org", push_to_hub=True, use_auth_token=self._token
)
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
def test_push_to_hub_dynamic_image_processor(self):
CustomImageProcessor.register_for_auto_class()
image_processor = CustomImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("test-dynamic-image-processor", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map,
{"ImageProcessor": "custom_image_processing.CustomImageProcessor"},
)
new_image_processor = AutoImageProcessor.from_pretrained(
f"{USER}/test-dynamic-image-processor", trust_remote_code=True
)
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor")

View File

@ -353,6 +353,7 @@ SPECIAL_MODULE_TO_TEST_MAP = {
"feature_extraction_sequence_utils.py": "test_sequence_feature_extraction_common.py", "feature_extraction_sequence_utils.py": "test_sequence_feature_extraction_common.py",
"feature_extraction_utils.py": "test_feature_extraction_common.py", "feature_extraction_utils.py": "test_feature_extraction_common.py",
"file_utils.py": ["utils/test_file_utils.py", "utils/test_model_output.py"], "file_utils.py": ["utils/test_file_utils.py", "utils/test_model_output.py"],
"image_processing_utils.py": ["test_image_processing_common.py", "utils/test_image_processing_utils.py"],
"image_transforms.py": "test_image_transforms.py", "image_transforms.py": "test_image_transforms.py",
"utils/generic.py": ["utils/test_file_utils.py", "utils/test_model_output.py", "utils/test_generic.py"], "utils/generic.py": ["utils/test_file_utils.py", "utils/test_model_output.py", "utils/test_generic.py"],
"utils/hub.py": "utils/test_hub_utils.py", "utils/hub.py": "utils/test_hub_utils.py",