mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* Add test_image_processing_common.py * Fix typo * Update imports and test fetcher * Revert but keep test fetcher update * Fix imports * Fix all imports * Formatting fix * Update tests/test_image_processing_common.py
205 lines
7.4 KiB
Python
205 lines
7.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2022s HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
|
|
from ...test_image_processing_common import prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import ConvNextFeatureExtractor
|
|
|
|
|
|
class ConvNextFeatureExtractionTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=None,
|
|
crop_pct=0.875,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
):
|
|
size = size if size is not None else {"shortest_edge": 20}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.crop_pct = crop_pct
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
|
|
def prepare_feat_extract_dict(self):
|
|
return {
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_normalize": self.do_normalize,
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"crop_pct": self.crop_pct,
|
|
}
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class ConvNextFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
|
|
|
|
feature_extraction_class = ConvNextFeatureExtractor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.feature_extract_tester = ConvNextFeatureExtractionTester(self)
|
|
|
|
@property
|
|
def feat_extract_dict(self):
|
|
return self.feature_extract_tester.prepare_feat_extract_dict()
|
|
|
|
def test_feat_extract_properties(self):
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
|
self.assertTrue(hasattr(feature_extractor, "do_resize"))
|
|
self.assertTrue(hasattr(feature_extractor, "size"))
|
|
self.assertTrue(hasattr(feature_extractor, "crop_pct"))
|
|
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
|
|
self.assertTrue(hasattr(feature_extractor, "image_mean"))
|
|
self.assertTrue(hasattr(feature_extractor, "image_std"))
|
|
|
|
def test_feat_extract_from_dict_with_kwargs(self):
|
|
feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict)
|
|
self.assertEqual(feature_extractor.size, {"shortest_edge": 20})
|
|
|
|
feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict, size=42)
|
|
self.assertEqual(feature_extractor.size, {"shortest_edge": 42})
|
|
|
|
def test_batch_feature(self):
|
|
pass
|
|
|
|
def test_call_pil(self):
|
|
# Initialize feature_extractor
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
|
# create random PIL images
|
|
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
1,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
self.feature_extract_tester.batch_size,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
),
|
|
)
|
|
|
|
def test_call_numpy(self):
|
|
# Initialize feature_extractor
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
|
# create random numpy tensors
|
|
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
1,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
self.feature_extract_tester.batch_size,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
),
|
|
)
|
|
|
|
def test_call_pytorch(self):
|
|
# Initialize feature_extractor
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
1,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
self.feature_extract_tester.batch_size,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
self.feature_extract_tester.size["shortest_edge"],
|
|
),
|
|
)
|