mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
[modular] Fix the prefix-based renaming if the old and new model share a common name suffix (#37829)
* first try * Fix and set examples * style * fix * Update modular_test_detr.py * Update image_processing_new_imgproc_model.py * Update modular_model_converter.py
This commit is contained in:
parent
a847d4aa6b
commit
4602059aae
@ -4,7 +4,7 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_new_imgproc_model.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Optional, Union
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -74,13 +74,13 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
|
||||
def __init__(
|
||||
self,
|
||||
do_resize: bool = True,
|
||||
size: Optional[dict[str, int]] = None,
|
||||
size: Optional[Dict[str, int]] = None,
|
||||
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
||||
do_rescale: bool = True,
|
||||
rescale_factor: Union[int, float] = 1 / 255,
|
||||
do_normalize: bool = True,
|
||||
image_mean: Optional[Union[float, list[float]]] = None,
|
||||
image_std: Optional[Union[float, list[float]]] = None,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
do_convert_rgb: bool = True,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
@ -101,7 +101,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
|
||||
def resize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
size: dict[str, int],
|
||||
size: Dict[str, int],
|
||||
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
@ -151,13 +151,13 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
|
||||
self,
|
||||
images: ImageInput,
|
||||
do_resize: Optional[bool] = None,
|
||||
size: Optional[dict[str, int]] = None,
|
||||
size: Optional[Dict[str, int]] = None,
|
||||
resample: PILImageResampling = None,
|
||||
do_rescale: Optional[bool] = None,
|
||||
rescale_factor: Optional[float] = None,
|
||||
do_normalize: Optional[bool] = None,
|
||||
image_mean: Optional[Union[float, list[float]]] = None,
|
||||
image_std: Optional[Union[float, list[float]]] = None,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
return_tensors: Optional[Union[str, TensorType]] = None,
|
||||
do_convert_rgb: Optional[bool] = None,
|
||||
data_format: ChannelDimension = ChannelDimension.FIRST,
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_add_function.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
# Note that zamba does not have the `apply_rotary_pos_emb` function!
|
||||
from typing import Optional
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -62,5 +62,5 @@ class TestAttention(nn.Module):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def forward(self) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
def forward(self) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
_ = apply_rotary_pos_emb(1, 1, 1, 1)
|
||||
|
@ -4,27 +4,41 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_dummy.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from functools import partial
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from .configuration_dummy import DummyConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("RMSNorm")
|
||||
class DummyRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
@ -63,45 +77,18 @@ class DummyRotaryEmbedding(nn.Module):
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
self.original_inv_freq = self.inv_freq
|
||||
|
||||
def _dynamic_frequency_update(self, position_ids, device):
|
||||
"""
|
||||
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
||||
1 - growing beyond the cached sequence length (allow scaling)
|
||||
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
||||
"""
|
||||
seq_len = torch.max(position_ids) + 1
|
||||
if seq_len > self.max_seq_len_cached: # growth
|
||||
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
||||
self.max_seq_len_cached = seq_len
|
||||
|
||||
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
||||
# This .to() is needed if the model has been moved to a device after being initialized (because
|
||||
# the buffer is automatically moved, but not the original copy)
|
||||
self.original_inv_freq = self.original_inv_freq.to(device)
|
||||
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
||||
self.max_seq_len_cached = self.original_max_seq_len
|
||||
|
||||
@torch.no_grad()
|
||||
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
||||
def forward(self, x, position_ids):
|
||||
if "dynamic" in self.rope_type:
|
||||
self._dynamic_frequency_update(position_ids, device=x.device)
|
||||
|
||||
# Core RoPE block
|
||||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
||||
position_ids_expanded = position_ids[:, None, :].float()
|
||||
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
||||
device_type = x.device.type
|
||||
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
||||
with torch.autocast(device_type=device_type, enabled=False):
|
||||
|
||||
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
||||
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
||||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
cos = emb.cos()
|
||||
sin = emb.sin()
|
||||
|
||||
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
||||
cos = cos * self.attention_scaling
|
||||
sin = sin * self.attention_scaling
|
||||
cos = emb.cos() * self.attention_scaling
|
||||
sin = emb.sin() * self.attention_scaling
|
||||
|
||||
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
||||
|
||||
@ -223,12 +210,12 @@ class DummyAttention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
@ -245,6 +232,7 @@ class DummyAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
@ -270,7 +258,7 @@ class DummyAttention(nn.Module):
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class DummyDecoderLayer(nn.Module):
|
||||
class DummyDecoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: DummyConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
@ -290,11 +278,10 @@ class DummyDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
@ -369,6 +356,8 @@ class DummyPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, DummyRMSNorm):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
DUMMY_INPUTS_DOCSTRING = r"""
|
||||
@ -381,12 +370,15 @@ DUMMY_INPUTS_DOCSTRING = r"""
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
@ -406,20 +398,12 @@ DUMMY_INPUTS_DOCSTRING = r"""
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
Two formats are allowed:
|
||||
- a [`~cache_utils.Cache`] instance, see our
|
||||
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
||||
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
||||
cache format.
|
||||
|
||||
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
||||
legacy cache format will be returned.
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
@ -480,10 +464,11 @@ class DummyModel(DummyPreTrainedModel):
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(DUMMY_INPUTS_DOCSTRING)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
@ -491,16 +476,14 @@ class DummyModel(DummyPreTrainedModel):
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Union[tuple, BaseModelOutputWithPast]:
|
||||
) -> BaseModelOutputWithPast:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
||||
@ -511,6 +494,10 @@ class DummyModel(DummyPreTrainedModel):
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
||||
if not isinstance(past_key_values, (type(None), Cache)):
|
||||
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
@ -543,30 +530,17 @@ class DummyModel(DummyPreTrainedModel):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
partial(decoder_layer.__call__, **flash_attn_kwargs),
|
||||
hidden_states,
|
||||
causal_mask,
|
||||
position_ids,
|
||||
past_key_values,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
cache_position,
|
||||
position_embeddings,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
**flash_attn_kwargs,
|
||||
)
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
**flash_attn_kwargs,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
@ -579,26 +553,29 @@ class DummyModel(DummyPreTrainedModel):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
output = BaseModelOutputWithPast(
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=past_key_values if use_cache else None,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
return output if return_dict else output.to_tuple()
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: torch.Tensor,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
@ -616,7 +593,7 @@ class DummyModel(DummyPreTrainedModel):
|
||||
):
|
||||
return None
|
||||
|
||||
dtype, device = input_tensor.dtype, input_tensor.device
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
@ -633,7 +610,6 @@ class DummyModel(DummyPreTrainedModel):
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
@ -641,7 +617,7 @@ class DummyModel(DummyPreTrainedModel):
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu"]
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
@ -658,7 +634,6 @@ class DummyModel(DummyPreTrainedModel):
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
@ -678,8 +653,6 @@ class DummyModel(DummyPreTrainedModel):
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
device (`torch.device`):
|
||||
The device to plcae the 4D attention mask on.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
@ -691,11 +664,11 @@ class DummyModel(DummyPreTrainedModel):
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
|
@ -6,7 +6,7 @@
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
import math
|
||||
import os
|
||||
from typing import Optional, Union
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from packaging import version
|
||||
@ -136,9 +136,9 @@ class DummyBertSelfAttention(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor]:
|
||||
) -> Tuple[torch.Tensor]:
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
|
||||
# If this is instantiated as a cross-attention module, the keys
|
||||
@ -245,9 +245,9 @@ class DummyBertSdpaSelfAttention(DummyBertSelfAttention):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor]:
|
||||
) -> Tuple[torch.Tensor]:
|
||||
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
|
||||
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
|
||||
logger.warning_once(
|
||||
@ -386,9 +386,9 @@ class DummyBertAttention(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor]:
|
||||
) -> Tuple[torch.Tensor]:
|
||||
self_outputs = self.self(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
@ -454,9 +454,9 @@ class DummyBertLayer(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor]:
|
||||
) -> Tuple[torch.Tensor]:
|
||||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||||
self_attention_outputs = self.attention(
|
||||
@ -532,12 +532,12 @@ class DummyBertEncoder(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
return_dict: Optional[bool] = True,
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
@ -626,6 +626,46 @@ class DummyBertPooler(nn.Module):
|
||||
return pooled_output
|
||||
|
||||
|
||||
class DummyBertPredictionHeadTransform(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.transform_act_fn = config.hidden_act
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.transform_act_fn(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class DummyBertLMPredictionHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.transform = DummyBertPredictionHeadTransform(config)
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||||
|
||||
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||||
self.decoder.bias = self.bias
|
||||
|
||||
def _tie_weights(self):
|
||||
self.decoder.bias = self.bias
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.transform(hidden_states)
|
||||
hidden_states = self.decoder(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
def load_tf_weights_in_dummy_bert(model, config, tf_checkpoint_path):
|
||||
"""Load tf checkpoints in a pytorch model."""
|
||||
try:
|
||||
@ -726,6 +766,8 @@ class DummyBertPreTrainedModel(PreTrainedModel):
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
elif isinstance(module, DummyBertLMPredictionHead):
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
DUMMY_BERT_START_DOCSTRING = r"""
|
||||
|
@ -4,28 +4,48 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_from_uppercase_model.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Optional
|
||||
from typing import Callable, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...pytorch_utils import is_torch_greater_or_equal_than_2_2
|
||||
from ...utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging
|
||||
from .configuration_from_uppercase_model import FromUppercaseModelConfig
|
||||
|
||||
|
||||
if is_flash_attn_2_available():
|
||||
from ...modeling_flash_attention_utils import _flash_attention_forward
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
||||
from ...utils import logging
|
||||
from .configuration_from_uppercase_model import FromUppercaseModelTextConfig, FromUppercaseModelVisionConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def eager_attention_forward(
|
||||
module: nn.Module,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
scaling: float,
|
||||
dropout: float = 0.0,
|
||||
output_attentions: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
|
||||
if attention_mask is not None:
|
||||
attn_weights = attn_weights + attention_mask
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
||||
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
||||
|
||||
attn_output = torch.matmul(attn_weights, value)
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class FromUppercaseModelAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(self, config):
|
||||
def __init__(self, config: Union[FromUppercaseModelVisionConfig, FromUppercaseModelTextConfig]):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.embed_dim = config.hidden_size
|
||||
@ -38,253 +58,71 @@ class FromUppercaseModelAttention(nn.Module):
|
||||
)
|
||||
self.scale = self.head_dim**-0.5
|
||||
self.dropout = config.attention_dropout
|
||||
self.is_causal = False
|
||||
|
||||
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
bsz, tgt_len, embed_dim = hidden_states.size()
|
||||
batch_size, seq_length, embed_dim = hidden_states.shape
|
||||
|
||||
# get query proj
|
||||
query_states = self.q_proj(hidden_states) * self.scale
|
||||
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||||
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||||
queries = self.q_proj(hidden_states)
|
||||
keys = self.k_proj(hidden_states)
|
||||
values = self.v_proj(hidden_states)
|
||||
|
||||
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||||
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||||
key_states = key_states.view(*proj_shape)
|
||||
value_states = value_states.view(*proj_shape)
|
||||
|
||||
src_len = key_states.size(1)
|
||||
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||||
|
||||
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
# apply the causal_attention_mask first
|
||||
if causal_attention_mask is not None:
|
||||
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
||||
f" {causal_attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
|
||||
if output_attentions:
|
||||
# this operation is a bit akward, but it's required to
|
||||
# make sure that attn_weights keeps its gradient.
|
||||
# In order to do so, attn_weights have to reshaped
|
||||
# twice and have to be reused in the following
|
||||
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||||
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
queries = queries.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
||||
keys = keys.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
||||
values = values.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
||||
# FROM_UPPERCASE_MODEL text model uses both `causal_attention_mask` and `attention_mask`
|
||||
# in case FA2 kernel is called, `is_causal` should be inferred from `causal_attention_mask`
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
self.is_causal = causal_attention_mask is not None
|
||||
else:
|
||||
attn_weights_reshaped = None
|
||||
if attention_mask is not None and causal_attention_mask is not None:
|
||||
attention_mask = attention_mask + causal_attention_mask
|
||||
elif causal_attention_mask is not None:
|
||||
attention_mask = causal_attention_mask
|
||||
|
||||
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||||
|
||||
attn_output = torch.bmm(attn_probs, value_states)
|
||||
|
||||
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
||||
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
return attn_output, attn_weights_reshaped
|
||||
|
||||
|
||||
class FromUppercaseModelFlashAttention2(FromUppercaseModelAttention):
|
||||
"""
|
||||
FromUppercaseModelAttention flash attention module. This module inherits from `FromUppercaseModelAttention` as the weights of the module stays
|
||||
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
||||
flash attention and deal with padding tokens in case the input contains any of them.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
||||
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
||||
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
||||
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
||||
|
||||
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
output_attentions = False
|
||||
|
||||
batch_size, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
# Flash attention requires the input to have the shape
|
||||
# batch_size x seq_length x head_dim x hidden_dim
|
||||
# therefore we just need to keep the original shape
|
||||
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
||||
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
||||
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
||||
|
||||
dropout_rate = self.dropout if self.training else 0.0
|
||||
|
||||
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
||||
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
||||
# cast them back in the correct dtype just to be sure everything works as expected.
|
||||
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
||||
# in fp32.
|
||||
|
||||
input_dtype = query_states.dtype
|
||||
if input_dtype == torch.float32:
|
||||
if torch.is_autocast_enabled():
|
||||
target_dtype = torch.get_autocast_gpu_dtype()
|
||||
# Handle the case where the model is quantized
|
||||
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||||
target_dtype = self.config._pre_quantization_dtype
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and output_attentions:
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
target_dtype = self.q_proj.weight.dtype
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
logger.warning_once(
|
||||
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
||||
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
||||
f" {target_dtype}."
|
||||
)
|
||||
|
||||
query_states = query_states.to(target_dtype)
|
||||
key_states = key_states.to(target_dtype)
|
||||
value_states = value_states.to(target_dtype)
|
||||
|
||||
attn_output = _flash_attention_forward(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
attention_mask,
|
||||
q_len,
|
||||
dropout=dropout_rate,
|
||||
is_causal=causal_attention_mask is not None,
|
||||
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
||||
is_causal=self.is_causal,
|
||||
scaling=self.scale,
|
||||
dropout=0.0 if not self.training else self.dropout,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous()
|
||||
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class FromUppercaseModelSdpaAttention(FromUppercaseModelAttention):
|
||||
"""
|
||||
SDPA attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
||||
`FromUppercaseModelAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
||||
SDPA API.
|
||||
"""
|
||||
|
||||
# Adapted from FromUppercaseModelAttention.forward
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
if output_attentions:
|
||||
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
||||
logger.warning_once(
|
||||
"FromUppercaseModelModel is using FromUppercaseModelSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not "
|
||||
"support `output_attentions=True`. Falling back to the manual attention implementation, but specifying "
|
||||
"the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can "
|
||||
'be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
return super().forward(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
causal_attention_mask=causal_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
# FROM_UPPERCASE_MODEL text model uses both `causal_attention_mask` and `attention_mask`
|
||||
if attention_mask is not None and causal_attention_mask is not None:
|
||||
attn_mask = attention_mask + causal_attention_mask
|
||||
elif causal_attention_mask is not None:
|
||||
attn_mask = causal_attention_mask
|
||||
else:
|
||||
attn_mask = attention_mask
|
||||
|
||||
bsz, tgt_len, embed_dim = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
||||
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
||||
if not is_torch_greater_or_equal_than_2_2 and query_states.device.type == "cuda" and attn_mask is not None:
|
||||
query_states = query_states.contiguous()
|
||||
key_states = key_states.contiguous()
|
||||
value_states = value_states.contiguous()
|
||||
|
||||
# FROM_UPPERCASE_MODEL text model uses both `causal_attention_mask` and `attention_mask` sequentially.
|
||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_mask=attn_mask,
|
||||
dropout_p=self.dropout if self.training else 0.0,
|
||||
scale=self.scale,
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
||||
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
return attn_output, None
|
||||
|
||||
|
||||
class FromUppercaseModelMLP(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
@ -300,18 +138,11 @@ class FromUppercaseModelMLP(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
FROM_UPPERCASE_MODEL_ATTENTION_CLASSES = {
|
||||
"eager": FromUppercaseModelAttention,
|
||||
"sdpa": FromUppercaseModelSdpaAttention,
|
||||
"flash_attention_2": FromUppercaseModelFlashAttention2,
|
||||
}
|
||||
|
||||
|
||||
class FromUppercaseModelEncoderLayer(nn.Module):
|
||||
def __init__(self, config: FromUppercaseModelConfig):
|
||||
def __init__(self, config: Union[FromUppercaseModelVisionConfig, FromUppercaseModelTextConfig]):
|
||||
super().__init__()
|
||||
self.embed_dim = config.hidden_size
|
||||
self.self_attn = FROM_UPPERCASE_MODEL_ATTENTION_CLASSES[config._attn_implementation](config)
|
||||
self.self_attn = FromUppercaseModelAttention(config)
|
||||
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||||
self.mlp = FromUppercaseModelMLP(config)
|
||||
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||||
@ -322,7 +153,7 @@ class FromUppercaseModelEncoderLayer(nn.Module):
|
||||
attention_mask: torch.Tensor,
|
||||
causal_attention_mask: torch.Tensor,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.FloatTensor]:
|
||||
) -> Tuple[torch.FloatTensor]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
|
@ -4,27 +4,41 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_multimodal1.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from functools import partial
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from .configuration_multimodal1 import Multimodal1TextConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("RMSNorm")
|
||||
class Multimodal1TextRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
@ -63,45 +77,18 @@ class Multimodal1TextRotaryEmbedding(nn.Module):
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
self.original_inv_freq = self.inv_freq
|
||||
|
||||
def _dynamic_frequency_update(self, position_ids, device):
|
||||
"""
|
||||
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
||||
1 - growing beyond the cached sequence length (allow scaling)
|
||||
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
||||
"""
|
||||
seq_len = torch.max(position_ids) + 1
|
||||
if seq_len > self.max_seq_len_cached: # growth
|
||||
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
||||
self.max_seq_len_cached = seq_len
|
||||
|
||||
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
||||
# This .to() is needed if the model has been moved to a device after being initialized (because
|
||||
# the buffer is automatically moved, but not the original copy)
|
||||
self.original_inv_freq = self.original_inv_freq.to(device)
|
||||
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
||||
self.max_seq_len_cached = self.original_max_seq_len
|
||||
|
||||
@torch.no_grad()
|
||||
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
||||
def forward(self, x, position_ids):
|
||||
if "dynamic" in self.rope_type:
|
||||
self._dynamic_frequency_update(position_ids, device=x.device)
|
||||
|
||||
# Core RoPE block
|
||||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
||||
position_ids_expanded = position_ids[:, None, :].float()
|
||||
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
||||
device_type = x.device.type
|
||||
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
||||
with torch.autocast(device_type=device_type, enabled=False):
|
||||
|
||||
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
||||
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
||||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
cos = emb.cos()
|
||||
sin = emb.sin()
|
||||
|
||||
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
||||
cos = cos * self.attention_scaling
|
||||
sin = sin * self.attention_scaling
|
||||
cos = emb.cos() * self.attention_scaling
|
||||
sin = emb.sin() * self.attention_scaling
|
||||
|
||||
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
||||
|
||||
@ -223,12 +210,12 @@ class Multimodal1TextAttention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
@ -245,6 +232,7 @@ class Multimodal1TextAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
@ -270,7 +258,7 @@ class Multimodal1TextAttention(nn.Module):
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class Multimodal1TextDecoderLayer(nn.Module):
|
||||
class Multimodal1TextDecoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: Multimodal1TextConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
@ -290,11 +278,10 @@ class Multimodal1TextDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
@ -369,6 +356,8 @@ class Multimodal1TextPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, Multimodal1TextRMSNorm):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
MULTIMODAL1_TEXT_INPUTS_DOCSTRING = r"""
|
||||
@ -381,12 +370,15 @@ MULTIMODAL1_TEXT_INPUTS_DOCSTRING = r"""
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
@ -406,20 +398,12 @@ MULTIMODAL1_TEXT_INPUTS_DOCSTRING = r"""
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
Two formats are allowed:
|
||||
- a [`~cache_utils.Cache`] instance, see our
|
||||
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
||||
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
||||
cache format.
|
||||
|
||||
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
||||
legacy cache format will be returned.
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
@ -480,10 +464,11 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MULTIMODAL1_TEXT_INPUTS_DOCSTRING)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
@ -491,16 +476,14 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Union[tuple, BaseModelOutputWithPast]:
|
||||
) -> BaseModelOutputWithPast:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
||||
@ -511,6 +494,10 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
||||
if not isinstance(past_key_values, (type(None), Cache)):
|
||||
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
@ -543,30 +530,17 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
partial(decoder_layer.__call__, **flash_attn_kwargs),
|
||||
hidden_states,
|
||||
causal_mask,
|
||||
position_ids,
|
||||
past_key_values,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
cache_position,
|
||||
position_embeddings,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
**flash_attn_kwargs,
|
||||
)
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
**flash_attn_kwargs,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
@ -579,26 +553,29 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
output = BaseModelOutputWithPast(
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=past_key_values if use_cache else None,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
return output if return_dict else output.to_tuple()
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: torch.Tensor,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
@ -616,7 +593,7 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
):
|
||||
return None
|
||||
|
||||
dtype, device = input_tensor.dtype, input_tensor.device
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
@ -633,7 +610,6 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
@ -641,7 +617,7 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu"]
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
@ -658,7 +634,6 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
@ -678,8 +653,6 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
device (`torch.device`):
|
||||
The device to plcae the 4D attention mask on.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
@ -691,11 +664,11 @@ class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_multimodal2.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
|
||||
from typing import Optional, Union
|
||||
from typing import Callable, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -14,30 +14,48 @@ from transformers.utils import add_start_docstrings
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...pytorch_utils import is_torch_greater_or_equal_than_2_2
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...utils import (
|
||||
add_start_docstrings_to_model_forward,
|
||||
is_flash_attn_2_available,
|
||||
is_flash_attn_greater_or_equal_2_10,
|
||||
can_return_tuple,
|
||||
logging,
|
||||
replace_return_docstrings,
|
||||
torch_int,
|
||||
)
|
||||
from .configuration_multimodal2 import Multimodal2Config, Multimodal2VisionConfig
|
||||
|
||||
|
||||
if is_flash_attn_2_available():
|
||||
from ...modeling_flash_attention_utils import _flash_attention_forward
|
||||
from .configuration_multimodal2 import Multimodal2Config, Multimodal2TextConfig, Multimodal2VisionConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def eager_attention_forward(
|
||||
module: nn.Module,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
scaling: float,
|
||||
dropout: float = 0.0,
|
||||
output_attentions: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
|
||||
if attention_mask is not None:
|
||||
attn_weights = attn_weights + attention_mask
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
||||
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
||||
|
||||
attn_output = torch.matmul(attn_weights, value)
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class Multimodal2VisionAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(self, config):
|
||||
def __init__(self, config: Union[Multimodal2VisionConfig, Multimodal2TextConfig]):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.embed_dim = config.hidden_size
|
||||
@ -50,250 +68,68 @@ class Multimodal2VisionAttention(nn.Module):
|
||||
)
|
||||
self.scale = self.head_dim**-0.5
|
||||
self.dropout = config.attention_dropout
|
||||
self.is_causal = False
|
||||
|
||||
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
bsz, tgt_len, embed_dim = hidden_states.size()
|
||||
batch_size, seq_length, embed_dim = hidden_states.shape
|
||||
|
||||
# get query proj
|
||||
query_states = self.q_proj(hidden_states) * self.scale
|
||||
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||||
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||||
|
||||
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||||
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||||
key_states = key_states.view(*proj_shape)
|
||||
value_states = value_states.view(*proj_shape)
|
||||
|
||||
src_len = key_states.size(1)
|
||||
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||||
|
||||
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
# apply the causal_attention_mask first
|
||||
if causal_attention_mask is not None:
|
||||
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
||||
f" {causal_attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
|
||||
if output_attentions:
|
||||
# this operation is a bit akward, but it's required to
|
||||
# make sure that attn_weights keeps its gradient.
|
||||
# In order to do so, attn_weights have to reshaped
|
||||
# twice and have to be reused in the following
|
||||
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||||
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
else:
|
||||
attn_weights_reshaped = None
|
||||
|
||||
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||||
|
||||
attn_output = torch.bmm(attn_probs, value_states)
|
||||
|
||||
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
||||
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
return attn_output, attn_weights_reshaped
|
||||
|
||||
|
||||
class Multimodal2VisionSdpaAttention(Multimodal2VisionAttention):
|
||||
"""
|
||||
SDPA attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
||||
`Multimodal2VisionAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
||||
SDPA API.
|
||||
"""
|
||||
|
||||
# Adapted from Multimodal2VisionAttention.forward
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
if output_attentions:
|
||||
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
||||
logger.warning_once(
|
||||
"Multimodal2VisionModel is using Multimodal2VisionSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not "
|
||||
"support `output_attentions=True`. Falling back to the manual attention implementation, but specifying "
|
||||
"the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can "
|
||||
'be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
return super().forward(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
causal_attention_mask=causal_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
queries = self.q_proj(hidden_states)
|
||||
keys = self.k_proj(hidden_states)
|
||||
values = self.v_proj(hidden_states)
|
||||
|
||||
queries = queries.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
||||
keys = keys.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
||||
values = values.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
||||
# MULTIMODAL2_VISION text model uses both `causal_attention_mask` and `attention_mask`
|
||||
if attention_mask is not None and causal_attention_mask is not None:
|
||||
attn_mask = attention_mask + causal_attention_mask
|
||||
elif causal_attention_mask is not None:
|
||||
attn_mask = causal_attention_mask
|
||||
# in case FA2 kernel is called, `is_causal` should be inferred from `causal_attention_mask`
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
self.is_causal = causal_attention_mask is not None
|
||||
else:
|
||||
attn_mask = attention_mask
|
||||
if attention_mask is not None and causal_attention_mask is not None:
|
||||
attention_mask = attention_mask + causal_attention_mask
|
||||
elif causal_attention_mask is not None:
|
||||
attention_mask = causal_attention_mask
|
||||
|
||||
bsz, tgt_len, embed_dim = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
||||
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
||||
if not is_torch_greater_or_equal_than_2_2 and query_states.device.type == "cuda" and attn_mask is not None:
|
||||
query_states = query_states.contiguous()
|
||||
key_states = key_states.contiguous()
|
||||
value_states = value_states.contiguous()
|
||||
|
||||
# MULTIMODAL2_VISION text model uses both `causal_attention_mask` and `attention_mask` sequentially.
|
||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_mask=attn_mask,
|
||||
dropout_p=self.dropout if self.training else 0.0,
|
||||
scale=self.scale,
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
||||
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
return attn_output, None
|
||||
|
||||
|
||||
class Multimodal2VisionFlashAttention2(Multimodal2VisionAttention):
|
||||
"""
|
||||
Multimodal2VisionAttention flash attention module. This module inherits from `Multimodal2VisionAttention` as the weights of the module stays
|
||||
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
||||
flash attention and deal with padding tokens in case the input contains any of them.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
||||
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
||||
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
||||
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
||||
|
||||
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
output_attentions = False
|
||||
|
||||
batch_size, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
# Flash attention requires the input to have the shape
|
||||
# batch_size x seq_length x head_dim x hidden_dim
|
||||
# therefore we just need to keep the original shape
|
||||
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
||||
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
||||
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
||||
|
||||
dropout_rate = self.dropout if self.training else 0.0
|
||||
|
||||
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
||||
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
||||
# cast them back in the correct dtype just to be sure everything works as expected.
|
||||
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
||||
# in fp32.
|
||||
|
||||
input_dtype = query_states.dtype
|
||||
if input_dtype == torch.float32:
|
||||
if torch.is_autocast_enabled():
|
||||
target_dtype = torch.get_autocast_gpu_dtype()
|
||||
# Handle the case where the model is quantized
|
||||
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||||
target_dtype = self.config._pre_quantization_dtype
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and output_attentions:
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
target_dtype = self.q_proj.weight.dtype
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
logger.warning_once(
|
||||
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
||||
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
||||
f" {target_dtype}."
|
||||
)
|
||||
|
||||
query_states = query_states.to(target_dtype)
|
||||
key_states = key_states.to(target_dtype)
|
||||
value_states = value_states.to(target_dtype)
|
||||
|
||||
attn_output = _flash_attention_forward(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
attention_mask,
|
||||
q_len,
|
||||
dropout=dropout_rate,
|
||||
is_causal=causal_attention_mask is not None,
|
||||
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
||||
is_causal=self.is_causal,
|
||||
scaling=self.scale,
|
||||
dropout=0.0 if not self.training else self.dropout,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous()
|
||||
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
@ -312,18 +148,92 @@ class Multimodal2VisionMLP(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
MULTIMODAL2_VISION_ATTENTION_CLASSES = {
|
||||
"eager": Multimodal2VisionAttention,
|
||||
"sdpa": Multimodal2VisionSdpaAttention,
|
||||
"flash_attention_2": Multimodal2VisionFlashAttention2,
|
||||
}
|
||||
class Multimodal2Attention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(self, config: Union[Multimodal2VisionConfig, Multimodal2TextConfig]):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.embed_dim = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.embed_dim // self.num_heads
|
||||
if self.head_dim * self.num_heads != self.embed_dim:
|
||||
raise ValueError(
|
||||
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||||
f" {self.num_heads})."
|
||||
)
|
||||
self.scale = self.head_dim**-0.5
|
||||
self.dropout = config.attention_dropout
|
||||
self.is_causal = False
|
||||
|
||||
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
batch_size, seq_length, embed_dim = hidden_states.shape
|
||||
|
||||
queries = self.q_proj(hidden_states)
|
||||
keys = self.k_proj(hidden_states)
|
||||
values = self.v_proj(hidden_states)
|
||||
|
||||
queries = queries.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
||||
keys = keys.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
||||
values = values.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
||||
# MULTIMODAL2 text model uses both `causal_attention_mask` and `attention_mask`
|
||||
# in case FA2 kernel is called, `is_causal` should be inferred from `causal_attention_mask`
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
self.is_causal = causal_attention_mask is not None
|
||||
else:
|
||||
if attention_mask is not None and causal_attention_mask is not None:
|
||||
attention_mask = attention_mask + causal_attention_mask
|
||||
elif causal_attention_mask is not None:
|
||||
attention_mask = causal_attention_mask
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and output_attentions:
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
attention_mask,
|
||||
is_causal=self.is_causal,
|
||||
scaling=self.scale,
|
||||
dropout=0.0 if not self.training else self.dropout,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class Multimodal2VisionEncoderLayer(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.embed_dim = config.hidden_size
|
||||
self.self_attn = MULTIMODAL2_VISION_ATTENTION_CLASSES[config._attn_implementation](config)
|
||||
self.self_attn = Multimodal2Attention(config)
|
||||
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||||
self.mlp = Multimodal2VisionMLP(config)
|
||||
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||||
@ -334,7 +244,7 @@ class Multimodal2VisionEncoderLayer(nn.Module):
|
||||
attention_mask: torch.Tensor,
|
||||
causal_attention_mask: torch.Tensor,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.FloatTensor]:
|
||||
) -> Tuple[torch.FloatTensor]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
@ -384,6 +294,7 @@ class Multimodal2VisionEncoder(nn.Module):
|
||||
self.layers = nn.ModuleList([Multimodal2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
@can_return_tuple
|
||||
def forward(
|
||||
self,
|
||||
inputs_embeds,
|
||||
@ -391,8 +302,7 @@ class Multimodal2VisionEncoder(nn.Module):
|
||||
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple, BaseModelOutput]:
|
||||
) -> BaseModelOutput:
|
||||
r"""
|
||||
Args:
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
@ -426,7 +336,6 @@ class Multimodal2VisionEncoder(nn.Module):
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
encoder_states = () if output_hidden_states else None
|
||||
all_attentions = () if output_attentions else None
|
||||
@ -459,10 +368,10 @@ class Multimodal2VisionEncoder(nn.Module):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
||||
return BaseModelOutput(
|
||||
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
||||
last_hidden_state=hidden_states,
|
||||
hidden_states=encoder_states,
|
||||
attentions=all_attentions,
|
||||
)
|
||||
|
||||
|
||||
@ -578,6 +487,7 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
self.encoder = Multimodal2VisionEncoder(config)
|
||||
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MULTIMODAL2_VISION_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Multimodal2VisionConfig)
|
||||
def forward(
|
||||
@ -585,9 +495,8 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
interpolate_pos_encoding: Optional[bool] = False,
|
||||
) -> Union[tuple, BaseModelOutputWithPooling]:
|
||||
) -> BaseModelOutputWithPooling:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
@ -596,7 +505,6 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if pixel_values is None:
|
||||
raise ValueError("You have to specify pixel_values")
|
||||
@ -604,20 +512,16 @@ class Multimodal2VisionTransformer(nn.Module):
|
||||
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
|
||||
hidden_states = self.pre_layrnorm(hidden_states)
|
||||
|
||||
encoder_outputs = self.encoder(
|
||||
encoder_outputs: BaseModelOutput = self.encoder(
|
||||
inputs_embeds=hidden_states,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
last_hidden_state = encoder_outputs[0]
|
||||
last_hidden_state = encoder_outputs.last_hidden_state
|
||||
pooled_output = last_hidden_state[:, 0, :]
|
||||
pooled_output = self.post_layernorm(pooled_output)
|
||||
|
||||
if not return_dict:
|
||||
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||||
|
||||
return BaseModelOutputWithPooling(
|
||||
last_hidden_state=last_hidden_state,
|
||||
pooler_output=pooled_output,
|
||||
@ -662,6 +566,7 @@ class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel):
|
||||
def get_input_embeddings(self) -> nn.Module:
|
||||
return self.vision_model.embeddings.patch_embedding
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MULTIMODAL2_VISION_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Multimodal2VisionConfig)
|
||||
def forward(
|
||||
@ -670,8 +575,7 @@ class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel):
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
interpolate_pos_encoding: bool = False,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple, BaseModelOutputWithPooling]:
|
||||
) -> BaseModelOutputWithPooling:
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
@ -694,12 +598,10 @@ class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel):
|
||||
>>> last_hidden_state = outputs.last_hidden_state
|
||||
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
||||
```"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
return self.vision_model(
|
||||
pixel_values=pixel_values,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
interpolate_pos_encoding=interpolate_pos_encoding,
|
||||
)
|
||||
|
@ -4,7 +4,7 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_my_new_model2.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -13,14 +13,27 @@ from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, DynamicCache, StaticCache
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from .configuration_my_new_model2 import MyNewModel2Config
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@ -78,45 +91,18 @@ class MyNewModel2RotaryEmbedding(nn.Module):
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
self.original_inv_freq = self.inv_freq
|
||||
|
||||
def _dynamic_frequency_update(self, position_ids, device):
|
||||
"""
|
||||
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
||||
1 - growing beyond the cached sequence length (allow scaling)
|
||||
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
||||
"""
|
||||
seq_len = torch.max(position_ids) + 1
|
||||
if seq_len > self.max_seq_len_cached: # growth
|
||||
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
||||
self.max_seq_len_cached = seq_len
|
||||
|
||||
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
||||
# This .to() is needed if the model has been moved to a device after being initialized (because
|
||||
# the buffer is automatically moved, but not the original copy)
|
||||
self.original_inv_freq = self.original_inv_freq.to(device)
|
||||
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
||||
self.max_seq_len_cached = self.original_max_seq_len
|
||||
|
||||
@torch.no_grad()
|
||||
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
||||
def forward(self, x, position_ids):
|
||||
if "dynamic" in self.rope_type:
|
||||
self._dynamic_frequency_update(position_ids, device=x.device)
|
||||
|
||||
# Core RoPE block
|
||||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
||||
position_ids_expanded = position_ids[:, None, :].float()
|
||||
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
||||
device_type = x.device.type
|
||||
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
||||
with torch.autocast(device_type=device_type, enabled=False):
|
||||
|
||||
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
||||
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
||||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
cos = emb.cos()
|
||||
sin = emb.sin()
|
||||
|
||||
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
||||
cos = cos * self.attention_scaling
|
||||
sin = sin * self.attention_scaling
|
||||
cos = emb.cos() * self.attention_scaling
|
||||
sin = emb.sin() * self.attention_scaling
|
||||
|
||||
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
||||
|
||||
@ -222,12 +208,12 @@ class MyNewModel2Attention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
@ -244,6 +230,7 @@ class MyNewModel2Attention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
@ -269,7 +256,7 @@ class MyNewModel2Attention(nn.Module):
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class MyNewModel2DecoderLayer(nn.Module):
|
||||
class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: MyNewModel2Config, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
@ -289,11 +276,10 @@ class MyNewModel2DecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
@ -368,6 +354,8 @@ class MyNewModel2PreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, MyNewModel2RMSNorm):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
MY_NEW_MODEL2_INPUTS_DOCSTRING = r"""
|
||||
@ -380,12 +368,15 @@ MY_NEW_MODEL2_INPUTS_DOCSTRING = r"""
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
@ -405,20 +396,12 @@ MY_NEW_MODEL2_INPUTS_DOCSTRING = r"""
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
Two formats are allowed:
|
||||
- a [`~cache_utils.Cache`] instance, see our
|
||||
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
||||
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
||||
cache format.
|
||||
|
||||
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
||||
legacy cache format will be returned.
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
@ -479,27 +462,26 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MY_NEW_MODEL2_INPUTS_DOCSTRING)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs, # NOOP kwarg for now
|
||||
) -> Union[tuple, BaseModelOutputWithPast]:
|
||||
) -> BaseModelOutputWithPast:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
||||
@ -549,29 +531,16 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
hidden_states,
|
||||
causal_mask,
|
||||
position_ids,
|
||||
past_key_values,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
cache_position,
|
||||
position_embeddings,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
)
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
@ -584,26 +553,29 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
output = BaseModelOutputWithPast(
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=past_key_values if use_cache else None,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
return output if return_dict else output.to_tuple()
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: torch.Tensor,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
@ -621,7 +593,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
):
|
||||
return None
|
||||
|
||||
dtype, device = input_tensor.dtype, input_tensor.device
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
@ -638,7 +610,6 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
@ -646,7 +617,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu"]
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
@ -663,7 +634,6 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
@ -683,8 +653,6 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
device (`torch.device`):
|
||||
The device to plcae the 4D attention mask on.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
@ -696,11 +664,11 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
@ -747,29 +715,28 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(MY_NEW_MODEL2_INPUTS_DOCSTRING)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple, SequenceClassifierOutputWithPast]:
|
||||
) -> SequenceClassifierOutputWithPast:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = self.model(
|
||||
transformer_outputs: BaseModelOutputWithPast = self.model(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
@ -778,9 +745,8 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
hidden_states = transformer_outputs.last_hidden_state
|
||||
logits = self.score(hidden_states)
|
||||
|
||||
if input_ids is not None:
|
||||
@ -795,7 +761,7 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
elif input_ids is not None:
|
||||
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
|
||||
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
|
||||
token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
|
||||
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
|
||||
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
|
||||
else:
|
||||
last_non_pad_token = -1
|
||||
@ -810,10 +776,6 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
if labels is not None:
|
||||
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
||||
|
||||
if not return_dict:
|
||||
output = (pooled_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutputWithPast(
|
||||
loss=loss,
|
||||
logits=pooled_logits,
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_new_task_model.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from dataclasses import dataclass
|
||||
from typing import ClassVar, Optional, Union
|
||||
from typing import ClassVar, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -59,10 +59,10 @@ class NewTaskModelCausalLMOutputWithPast(ModelOutput):
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: torch.FloatTensor = None
|
||||
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None
|
||||
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
||||
attentions: Optional[tuple[torch.FloatTensor]] = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||||
image_hidden_states: Optional[torch.FloatTensor] = None
|
||||
|
||||
|
||||
@ -113,23 +113,12 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
|
||||
def _init_weights(self, module):
|
||||
# important: this ported version of NewTaskModelisn't meant for training from scratch - only
|
||||
# inference and fine-tuning
|
||||
std = (
|
||||
self.config.initializer_range
|
||||
if hasattr(self.config, "initializer_range")
|
||||
else self.config.text_config.initializer_range
|
||||
)
|
||||
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
|
||||
|
||||
if hasattr(module, "class_embedding"):
|
||||
module.class_embedding.data.normal_(mean=0.0, std=std)
|
||||
|
||||
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||||
if isinstance(module, nn.Linear):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
|
||||
NEW_TASK_MODEL_INPUTS_DOCSTRING = r"""
|
||||
@ -251,19 +240,22 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask,
|
||||
token_type_ids,
|
||||
past_key_values,
|
||||
cache_position,
|
||||
input_tensor,
|
||||
is_training: bool = False,
|
||||
token_type_ids=None,
|
||||
past_key_values=None,
|
||||
cache_position=None,
|
||||
input_tensor=None,
|
||||
is_training: Optional[bool] = None,
|
||||
):
|
||||
if self.config.text_config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and 0.0 in attention_mask:
|
||||
return attention_mask
|
||||
return None
|
||||
|
||||
is_training = is_training if is_training is not None else self.training
|
||||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||||
min_dtype = torch.finfo(self.dtype).min
|
||||
if input_tensor is None:
|
||||
input_tensor = attention_mask
|
||||
|
||||
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
@ -298,6 +290,8 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
|
||||
# First unmask prefix tokens during training
|
||||
if is_training:
|
||||
if token_type_ids is None:
|
||||
raise ValueError("Token type ids must be provided during training")
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
|
||||
)
|
||||
@ -345,7 +339,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
num_logits_to_keep: int = 0,
|
||||
) -> Union[tuple, NewTaskModelCausalLMOutputWithPast]:
|
||||
) -> Union[Tuple, NewTaskModelCausalLMOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
@ -368,19 +362,19 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
>>> import requests
|
||||
>>> from transformers import AutoProcessor, NewTaskModelForNewTask
|
||||
|
||||
>>> model = NewTaskModelForNewTask.from_pretrained("google/NewTaskModel-test-224px-hf")
|
||||
>>> processor = AutoProcessor.from_pretrained("google/NewTaskModel-test-224px-hf")
|
||||
>>> model = NewTaskModelForNewTask.from_pretrained("google/new_task_model2-3b-mix-224")
|
||||
>>> processor = AutoProcessor.from_pretrained("google/new_task_model2-3b-mix-224")
|
||||
|
||||
>>> prompt = "answer en Where is the cow standing?"
|
||||
>>> url = "https://huggingface.co/gv-hf/NewTaskModel-test-224px-hf/resolve/main/cow_beach_1.png"
|
||||
>>> prompt = "Where is the cat standing?"
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
||||
|
||||
>>> # Generate
|
||||
>>> generate_ids = model.generate(**inputs, max_length=30)
|
||||
>>> generate_ids = model.generate(**inputs,)
|
||||
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
"answer en Where is the cow standing?\nbeach"
|
||||
"Where is the cat standing?\nsnow"
|
||||
```
|
||||
Returns:
|
||||
"""
|
||||
|
@ -6,7 +6,7 @@
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
import math
|
||||
import os
|
||||
from typing import Optional, Union
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -139,9 +139,9 @@ class RobertaSelfAttention(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor]:
|
||||
) -> Tuple[torch.Tensor]:
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
|
||||
# If this is instantiated as a cross-attention module, the keys
|
||||
@ -248,9 +248,9 @@ class RobertaSdpaSelfAttention(RobertaSelfAttention):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor]:
|
||||
) -> Tuple[torch.Tensor]:
|
||||
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
|
||||
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
|
||||
logger.warning_once(
|
||||
@ -389,9 +389,9 @@ class RobertaAttention(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor]:
|
||||
) -> Tuple[torch.Tensor]:
|
||||
self_outputs = self.self(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
@ -457,9 +457,9 @@ class RobertaLayer(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> tuple[torch.Tensor]:
|
||||
) -> Tuple[torch.Tensor]:
|
||||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||||
self_attention_outputs = self.attention(
|
||||
@ -535,12 +535,12 @@ class RobertaEncoder(nn.Module):
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
return_dict: Optional[bool] = True,
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
@ -629,6 +629,46 @@ class RobertaPooler(nn.Module):
|
||||
return pooled_output
|
||||
|
||||
|
||||
class RobertaPredictionHeadTransform(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.transform_act_fn = config.hidden_act
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.transform_act_fn(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class RobertaLMPredictionHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.transform = RobertaPredictionHeadTransform(config)
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||||
|
||||
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||||
self.decoder.bias = self.bias
|
||||
|
||||
def _tie_weights(self):
|
||||
self.decoder.bias = self.bias
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.transform(hidden_states)
|
||||
hidden_states = self.decoder(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
def load_tf_weights_in_roberta(model, config, tf_checkpoint_path):
|
||||
"""Load tf checkpoints in a pytorch model."""
|
||||
try:
|
||||
@ -729,6 +769,8 @@ class RobertaPreTrainedModel(PreTrainedModel):
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
elif isinstance(module, RobertaLMPredictionHead):
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
ROBERTA_START_DOCSTRING = r"""
|
||||
@ -861,12 +903,12 @@ class RobertaModel(RobertaPreTrainedModel):
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
|
@ -4,26 +4,42 @@
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_super.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
from typing import Callable, Optional, Union
|
||||
from typing import Callable, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...cache_utils import Cache, StaticCache
|
||||
from ...integrations import use_kernel_forward_from_hub
|
||||
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_outputs import BaseModelOutputWithPast
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
||||
from ...modeling_layers import GradientCheckpointingLayer
|
||||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
||||
from ...utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
can_return_tuple,
|
||||
is_torch_flex_attn_available,
|
||||
logging,
|
||||
)
|
||||
from .configuration_super import SuperConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask
|
||||
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("RMSNorm")
|
||||
class SuperRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
@ -62,45 +78,18 @@ class SuperRotaryEmbedding(nn.Module):
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
self.original_inv_freq = self.inv_freq
|
||||
|
||||
def _dynamic_frequency_update(self, position_ids, device):
|
||||
"""
|
||||
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
||||
1 - growing beyond the cached sequence length (allow scaling)
|
||||
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
||||
"""
|
||||
seq_len = torch.max(position_ids) + 1
|
||||
if seq_len > self.max_seq_len_cached: # growth
|
||||
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
||||
self.max_seq_len_cached = seq_len
|
||||
|
||||
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
||||
# This .to() is needed if the model has been moved to a device after being initialized (because
|
||||
# the buffer is automatically moved, but not the original copy)
|
||||
self.original_inv_freq = self.original_inv_freq.to(device)
|
||||
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
||||
self.max_seq_len_cached = self.original_max_seq_len
|
||||
|
||||
@torch.no_grad()
|
||||
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
||||
def forward(self, x, position_ids):
|
||||
if "dynamic" in self.rope_type:
|
||||
self._dynamic_frequency_update(position_ids, device=x.device)
|
||||
|
||||
# Core RoPE block
|
||||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
||||
position_ids_expanded = position_ids[:, None, :].float()
|
||||
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
||||
device_type = x.device.type
|
||||
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
||||
with torch.autocast(device_type=device_type, enabled=False):
|
||||
|
||||
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
||||
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
||||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
cos = emb.cos()
|
||||
sin = emb.sin()
|
||||
|
||||
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
||||
cos = cos * self.attention_scaling
|
||||
sin = sin * self.attention_scaling
|
||||
cos = emb.cos() * self.attention_scaling
|
||||
sin = emb.sin() * self.attention_scaling
|
||||
|
||||
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
||||
|
||||
@ -222,12 +211,12 @@ class SuperAttention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
@ -244,6 +233,7 @@ class SuperAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
@ -269,7 +259,7 @@ class SuperAttention(nn.Module):
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class SuperDecoderLayer(nn.Module):
|
||||
class SuperDecoderLayer(GradientCheckpointingLayer):
|
||||
def __init__(self, config: SuperConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
@ -289,11 +279,10 @@ class SuperDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
@ -368,6 +357,8 @@ class SuperPreTrainedModel(PreTrainedModel):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, SuperRMSNorm):
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
SUPER_INPUTS_DOCSTRING = r"""
|
||||
@ -380,12 +371,15 @@ SUPER_INPUTS_DOCSTRING = r"""
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length) or `BlockMask`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
If the model is configured to use flex_attention, it will attempt to convert the mask Tensor into a BlockMask,
|
||||
but you can also pass a `BlockMask` object directly here.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
@ -405,20 +399,12 @@ SUPER_INPUTS_DOCSTRING = r"""
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
||||
past_key_values (`Cache`, *optional*):
|
||||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||||
|
||||
Two formats are allowed:
|
||||
- a [`~cache_utils.Cache`] instance, see our
|
||||
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
||||
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
||||
cache format.
|
||||
|
||||
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
||||
legacy cache format will be returned.
|
||||
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||||
@ -479,6 +465,7 @@ class SuperModel(SuperPreTrainedModel):
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@add_start_docstrings_to_model_forward(SUPER_INPUTS_DOCSTRING)
|
||||
def forward(
|
||||
self,
|
||||
@ -492,7 +479,7 @@ class SuperModel(SuperPreTrainedModel):
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
) -> Union[tuple, BaseModelOutputWithPast]:
|
||||
) -> Union[tuple, CausalLMOutputWithPast]:
|
||||
out = super().forward(
|
||||
input_ids,
|
||||
attention_mask,
|
||||
@ -510,16 +497,20 @@ class SuperModel(SuperPreTrainedModel):
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask: torch.Tensor,
|
||||
attention_mask: Union[torch.Tensor, "BlockMask"],
|
||||
input_tensor: torch.Tensor,
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Cache,
|
||||
output_attentions: bool,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
if attention_mask is not None and (attention_mask == 0.0).any():
|
||||
return attention_mask
|
||||
return None
|
||||
if self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask)
|
||||
return attention_mask
|
||||
|
||||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||||
@ -537,7 +528,7 @@ class SuperModel(SuperPreTrainedModel):
|
||||
):
|
||||
return None
|
||||
|
||||
dtype, device = input_tensor.dtype, input_tensor.device
|
||||
dtype = input_tensor.dtype
|
||||
sequence_length = input_tensor.shape[1]
|
||||
if using_static_cache:
|
||||
target_length = past_key_values.get_max_cache_shape()
|
||||
@ -554,7 +545,6 @@ class SuperModel(SuperPreTrainedModel):
|
||||
sequence_length=sequence_length,
|
||||
target_length=target_length,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
cache_position=cache_position,
|
||||
batch_size=input_tensor.shape[0],
|
||||
)
|
||||
@ -562,7 +552,7 @@ class SuperModel(SuperPreTrainedModel):
|
||||
if (
|
||||
self.config._attn_implementation == "sdpa"
|
||||
and attention_mask is not None
|
||||
and attention_mask.device.type in ["cuda", "xpu"]
|
||||
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
||||
and not output_attentions
|
||||
):
|
||||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||||
@ -579,7 +569,6 @@ class SuperModel(SuperPreTrainedModel):
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
@ -599,8 +588,6 @@ class SuperModel(SuperPreTrainedModel):
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
device (`torch.device`):
|
||||
The device to plcae the 4D attention mask on.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
@ -612,11 +599,11 @@ class SuperModel(SuperPreTrainedModel):
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
|
@ -5,7 +5,7 @@
|
||||
# modular_switch_function.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
# Note that llama and cohere have different definitions for rotate_half
|
||||
from typing import Callable, Optional
|
||||
from typing import Callable, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -123,12 +123,12 @@ class SwitchFunctionAttention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||||
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
past_key_value: Optional[Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
@ -145,6 +145,7 @@ class SwitchFunctionAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
|
1692
examples/modular-transformers/modeling_test_detr.py
Normal file
1692
examples/modular-transformers/modeling_test_detr.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -16,9 +16,7 @@ from transformers.models.clip.modeling_clip import (
|
||||
CLIPAttention,
|
||||
CLIPEncoder,
|
||||
CLIPEncoderLayer,
|
||||
CLIPFlashAttention2,
|
||||
CLIPPreTrainedModel,
|
||||
CLIPSdpaAttention,
|
||||
CLIPVisionModel,
|
||||
CLIPVisionTransformer,
|
||||
)
|
||||
@ -29,23 +27,6 @@ class Multimodal2VisionAttention(CLIPAttention):
|
||||
pass
|
||||
|
||||
|
||||
# Check that adding the second base class correctly set the parent, even though in clip it does not have the "Vision" part
|
||||
class Multimodal2VisionSdpaAttention(CLIPSdpaAttention, Multimodal2VisionAttention):
|
||||
pass
|
||||
|
||||
|
||||
# Check that adding the second base class correctly set the parent, even though in clip it does not have the "Vision" part
|
||||
class Multimodal2VisionFlashAttention2(CLIPFlashAttention2, Multimodal2VisionAttention):
|
||||
pass
|
||||
|
||||
|
||||
MULTIMODAL2_VISION_ATTENTION_CLASSES = {
|
||||
"eager": Multimodal2VisionAttention,
|
||||
"sdpa": Multimodal2VisionSdpaAttention,
|
||||
"flash_attention_2": Multimodal2VisionFlashAttention2,
|
||||
}
|
||||
|
||||
|
||||
class Multimodal2VisionMLP(CLIPMLP):
|
||||
pass
|
||||
|
||||
@ -53,7 +34,6 @@ class Multimodal2VisionMLP(CLIPMLP):
|
||||
class Multimodal2VisionEncoderLayer(CLIPEncoderLayer):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.self_attn = MULTIMODAL2_VISION_ATTENTION_CLASSES[config._attn_implementation](config)
|
||||
self.mlp = Multimodal2VisionMLP(config)
|
||||
|
||||
|
||||
|
7
examples/modular-transformers/modular_test_detr.py
Normal file
7
examples/modular-transformers/modular_test_detr.py
Normal file
@ -0,0 +1,7 @@
|
||||
from transformers.models.deformable_detr.modeling_deformable_detr import DeformableDetrModel
|
||||
|
||||
|
||||
# Here, the old and new model have by essence a common "detr" suffix. Make sure everything is correctly named
|
||||
# in this case (i.e., we do not wrongly detect `Detr` as part of a suffix to remove)
|
||||
class TestDetrModel(DeformableDetrModel):
|
||||
pass
|
@ -1466,6 +1466,10 @@ class ModularFileMapper(ModuleMapper):
|
||||
suffix = common_partial_suffix(class_name, modeling_bases[0])
|
||||
if len(suffix) > 0 and suffix[0].isupper():
|
||||
cased_model_name = class_name.replace(suffix, "")
|
||||
# If both the old model and new model share the last part of their name, is is detected as a common
|
||||
# suffix, but it should not be the case -> use the full name in this case
|
||||
if len(cased_model_name) < len(cased_default_name) and cased_default_name in class_name:
|
||||
cased_model_name = cased_default_name
|
||||
prefix_model_name_mapping[filename].update([cased_model_name])
|
||||
|
||||
# Check if we found multiple prefixes for some modeling files
|
||||
@ -1761,6 +1765,17 @@ if __name__ == "__main__":
|
||||
args.files_to_parse = glob.glob("src/transformers/models/**/modular_*.py", recursive=True)
|
||||
if args.files_to_parse == ["examples"]:
|
||||
args.files_to_parse = glob.glob("examples/**/modular_*.py", recursive=True)
|
||||
else:
|
||||
for i, model_name in enumerate(args.files_to_parse):
|
||||
if os.sep not in model_name:
|
||||
full_path = os.path.join("src", "transformers", "models", model_name, f"modular_{model_name}.py")
|
||||
# If it does not exist, try in the examples section
|
||||
if not os.path.isfile(full_path):
|
||||
full_path = os.path.join("examples", "modular-transformers", f"modular_{model_name}.py")
|
||||
# We did not find it anywhere
|
||||
if not os.path.isfile(full_path):
|
||||
raise ValueError(f"Cannot find a modular file for {model_name}. Please provide the full path.")
|
||||
args.files_to_parse[i] = full_path
|
||||
|
||||
priority_list, _ = find_priority_list(args.files_to_parse)
|
||||
assert len(priority_list) == len(args.files_to_parse), "Some files will not be converted"
|
||||
|
Loading…
Reference in New Issue
Block a user