mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* first try * Fix and set examples * style * fix * Update modular_test_detr.py * Update image_processing_new_imgproc_model.py * Update modular_model_converter.py
608 lines
26 KiB
Python
608 lines
26 KiB
Python
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
# This file was automatically generated from examples/modular-transformers/modular_multimodal2.py.
|
|
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
# the file from the modular. If any change should be done, please apply the change to the
|
|
# modular_multimodal2.py file directly. One of our CI enforces this.
|
|
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
|
|
from typing import Callable, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers.utils import add_start_docstrings
|
|
|
|
from ...activations import ACT2FN
|
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
from ...utils import (
|
|
add_start_docstrings_to_model_forward,
|
|
can_return_tuple,
|
|
logging,
|
|
replace_return_docstrings,
|
|
torch_int,
|
|
)
|
|
from .configuration_multimodal2 import Multimodal2Config, Multimodal2TextConfig, Multimodal2VisionConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def eager_attention_forward(
|
|
module: nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor],
|
|
scaling: float,
|
|
dropout: float = 0.0,
|
|
output_attentions: bool = True,
|
|
**kwargs,
|
|
):
|
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
|
|
if attention_mask is not None:
|
|
attn_weights = attn_weights + attention_mask
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
|
|
attn_output = torch.matmul(attn_weights, value)
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
return attn_output, attn_weights
|
|
|
|
|
|
class Multimodal2VisionAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config: Union[Multimodal2VisionConfig, Multimodal2TextConfig]):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
self.scale = self.head_dim**-0.5
|
|
self.dropout = config.attention_dropout
|
|
self.is_causal = False
|
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
batch_size, seq_length, embed_dim = hidden_states.shape
|
|
|
|
queries = self.q_proj(hidden_states)
|
|
keys = self.k_proj(hidden_states)
|
|
values = self.v_proj(hidden_states)
|
|
|
|
queries = queries.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
|
keys = keys.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
|
values = values.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
|
# MULTIMODAL2_VISION text model uses both `causal_attention_mask` and `attention_mask`
|
|
# in case FA2 kernel is called, `is_causal` should be inferred from `causal_attention_mask`
|
|
if self.config._attn_implementation == "flash_attention_2":
|
|
self.is_causal = causal_attention_mask is not None
|
|
else:
|
|
if attention_mask is not None and causal_attention_mask is not None:
|
|
attention_mask = attention_mask + causal_attention_mask
|
|
elif causal_attention_mask is not None:
|
|
attention_mask = causal_attention_mask
|
|
|
|
attention_interface: Callable = eager_attention_forward
|
|
if self.config._attn_implementation != "eager":
|
|
if self.config._attn_implementation == "sdpa" and output_attentions:
|
|
logger.warning_once(
|
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
)
|
|
else:
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
|
|
attn_output, attn_weights = attention_interface(
|
|
self,
|
|
queries,
|
|
keys,
|
|
values,
|
|
attention_mask,
|
|
is_causal=self.is_causal,
|
|
scaling=self.scale,
|
|
dropout=0.0 if not self.training else self.dropout,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
|
|
attn_output = self.out_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
return attn_output, attn_weights
|
|
|
|
|
|
class Multimodal2VisionMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = ACT2FN[config.hidden_act]
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Multimodal2Attention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config: Union[Multimodal2VisionConfig, Multimodal2TextConfig]):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
self.scale = self.head_dim**-0.5
|
|
self.dropout = config.attention_dropout
|
|
self.is_causal = False
|
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
batch_size, seq_length, embed_dim = hidden_states.shape
|
|
|
|
queries = self.q_proj(hidden_states)
|
|
keys = self.k_proj(hidden_states)
|
|
values = self.v_proj(hidden_states)
|
|
|
|
queries = queries.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
|
keys = keys.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
|
values = values.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
|
|
# MULTIMODAL2 text model uses both `causal_attention_mask` and `attention_mask`
|
|
# in case FA2 kernel is called, `is_causal` should be inferred from `causal_attention_mask`
|
|
if self.config._attn_implementation == "flash_attention_2":
|
|
self.is_causal = causal_attention_mask is not None
|
|
else:
|
|
if attention_mask is not None and causal_attention_mask is not None:
|
|
attention_mask = attention_mask + causal_attention_mask
|
|
elif causal_attention_mask is not None:
|
|
attention_mask = causal_attention_mask
|
|
|
|
attention_interface: Callable = eager_attention_forward
|
|
if self.config._attn_implementation != "eager":
|
|
if self.config._attn_implementation == "sdpa" and output_attentions:
|
|
logger.warning_once(
|
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
)
|
|
else:
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
|
|
attn_output, attn_weights = attention_interface(
|
|
self,
|
|
queries,
|
|
keys,
|
|
values,
|
|
attention_mask,
|
|
is_causal=self.is_causal,
|
|
scaling=self.scale,
|
|
dropout=0.0 if not self.training else self.dropout,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
|
|
attn_output = self.out_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
return attn_output, attn_weights
|
|
|
|
|
|
class Multimodal2VisionEncoderLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.embed_dim = config.hidden_size
|
|
self.self_attn = Multimodal2Attention(config)
|
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
self.mlp = Multimodal2VisionMLP(config)
|
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
causal_attention_mask: torch.Tensor,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.FloatTensor]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
|
`(config.encoder_attention_heads,)`.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
"""
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.layer_norm1(hidden_states)
|
|
hidden_states, attn_weights = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
causal_attention_mask=causal_attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.layer_norm2(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
return outputs
|
|
|
|
|
|
class Multimodal2VisionEncoder(nn.Module):
|
|
"""
|
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
|
[`Multimodal2VisionEncoderLayer`].
|
|
|
|
Args:
|
|
config: Multimodal2VisionConfig
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layers = nn.ModuleList([Multimodal2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
self.gradient_checkpointing = False
|
|
|
|
@can_return_tuple
|
|
def forward(
|
|
self,
|
|
inputs_embeds,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
) -> BaseModelOutput:
|
|
r"""
|
|
Args:
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
|
than the model's internal embedding lookup matrix.
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
for more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
hidden_states = inputs_embeds
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
encoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
causal_attention_mask,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
causal_attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=encoder_states,
|
|
attentions=all_attentions,
|
|
)
|
|
|
|
|
|
class Multimodal2VisionEmbeddings(nn.Module):
|
|
def __init__(self, config: Multimodal2VisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
|
|
|
self.patch_embedding = nn.Conv2d(
|
|
in_channels=config.num_channels,
|
|
out_channels=self.embed_dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size,
|
|
bias=False,
|
|
)
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.num_positions = self.num_patches + 1
|
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
|
|
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
|
"""
|
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
|
|
images. This method is also adapted to support torch.jit tracing.
|
|
|
|
Adapted from:
|
|
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
|
|
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
|
|
"""
|
|
|
|
num_patches = embeddings.shape[1] - 1
|
|
position_embedding = self.position_embedding.weight.unsqueeze(0)
|
|
num_positions = position_embedding.shape[1] - 1
|
|
|
|
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
|
|
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
|
|
return self.position_embedding(self.position_ids)
|
|
|
|
class_pos_embed = position_embedding[:, :1]
|
|
patch_pos_embed = position_embedding[:, 1:]
|
|
|
|
dim = embeddings.shape[-1]
|
|
|
|
new_height = height // self.patch_size
|
|
new_width = width // self.patch_size
|
|
|
|
sqrt_num_positions = torch_int(num_positions**0.5)
|
|
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
|
|
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
|
|
|
patch_pos_embed = nn.functional.interpolate(
|
|
patch_pos_embed,
|
|
size=(new_height, new_width),
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
)
|
|
|
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
|
|
|
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
|
|
|
|
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
|
|
batch_size, _, height, width = pixel_values.shape
|
|
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
|
|
raise ValueError(
|
|
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
|
|
)
|
|
target_dtype = self.patch_embedding.weight.dtype
|
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
|
if interpolate_pos_encoding:
|
|
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
|
else:
|
|
embeddings = embeddings + self.position_embedding(self.position_ids)
|
|
return embeddings
|
|
|
|
|
|
MULTIMODAL2_VISION_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
|
[`AutoImageProcessor`]. See [`Multimodal2ImageProcessor.__call__`] for details.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
|
|
Whether to interpolate the pre-trained position encodings.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
class Multimodal2VisionTransformer(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
embed_dim = config.hidden_size
|
|
|
|
self.embeddings = Multimodal2VisionEmbeddings(config)
|
|
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
self.encoder = Multimodal2VisionEncoder(config)
|
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
|
|
@can_return_tuple
|
|
@add_start_docstrings_to_model_forward(MULTIMODAL2_VISION_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Multimodal2VisionConfig)
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
interpolate_pos_encoding: Optional[bool] = False,
|
|
) -> BaseModelOutputWithPooling:
|
|
r"""
|
|
Returns:
|
|
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
|
|
if pixel_values is None:
|
|
raise ValueError("You have to specify pixel_values")
|
|
|
|
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
|
|
hidden_states = self.pre_layrnorm(hidden_states)
|
|
|
|
encoder_outputs: BaseModelOutput = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
|
|
last_hidden_state = encoder_outputs.last_hidden_state
|
|
pooled_output = last_hidden_state[:, 0, :]
|
|
pooled_output = self.post_layernorm(pooled_output)
|
|
|
|
return BaseModelOutputWithPooling(
|
|
last_hidden_state=last_hidden_state,
|
|
pooler_output=pooled_output,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
class Multimodal2VisionPreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = Multimodal2Config
|
|
base_model_prefix = "multimodal2_vision"
|
|
supports_gradient_checkpointing = True
|
|
_supports_sdpa = True
|
|
_supports_flash_attn_2 = True
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights"""
|
|
if isinstance(module, Multimodal2VisionMLP):
|
|
pass
|
|
|
|
|
|
MULTIMODAL2_VISION_START_DOCSTRING = "doc"
|
|
|
|
|
|
@add_start_docstrings("New doc", MULTIMODAL2_VISION_START_DOCSTRING)
|
|
class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel):
|
|
config_class = Multimodal2VisionConfig
|
|
main_input_name = "pixel_values"
|
|
_no_split_modules = ["Multimodal2VisionEncoderLayer"]
|
|
|
|
def __init__(self, config: Multimodal2VisionConfig):
|
|
super().__init__(config)
|
|
self.vision_model = Multimodal2VisionTransformer(config)
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.vision_model.embeddings.patch_embedding
|
|
|
|
@can_return_tuple
|
|
@add_start_docstrings_to_model_forward(MULTIMODAL2_VISION_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Multimodal2VisionConfig)
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
interpolate_pos_encoding: bool = False,
|
|
) -> BaseModelOutputWithPooling:
|
|
r"""
|
|
Returns:
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, Multimodal2VisionModel
|
|
|
|
>>> model = Multimodal2VisionModel.from_pretrained("openai/multimodal2-vit-base-patch32")
|
|
>>> processor = AutoProcessor.from_pretrained("openai/multimodal2-vit-base-patch32")
|
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> inputs = processor(images=image, return_tensors="pt")
|
|
|
|
>>> outputs = model(**inputs)
|
|
>>> last_hidden_state = outputs.last_hidden_state
|
|
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
|
```"""
|
|
|
|
return self.vision_model(
|
|
pixel_values=pixel_values,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
|
)
|