diff --git a/tests/models/ctrl/test_modeling_ctrl.py b/tests/models/ctrl/test_modeling_ctrl.py index fd202772391..dfcb2c91338 100644 --- a/tests/models/ctrl/test_modeling_ctrl.py +++ b/tests/models/ctrl/test_modeling_ctrl.py @@ -133,7 +133,7 @@ class CTRLModelTester: n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, - # intermediate_size=self.intermediate_size, + dff=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, @@ -243,10 +243,6 @@ class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: diff --git a/tests/models/ctrl/test_modeling_tf_ctrl.py b/tests/models/ctrl/test_modeling_tf_ctrl.py index 9a5ebbe34a7..01e57bcca37 100644 --- a/tests/models/ctrl/test_modeling_tf_ctrl.py +++ b/tests/models/ctrl/test_modeling_tf_ctrl.py @@ -95,7 +95,7 @@ class TFCTRLModelTester(object): n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, - # intermediate_size=self.intermediate_size, + dff=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, diff --git a/tests/models/cvt/test_modeling_cvt.py b/tests/models/cvt/test_modeling_cvt.py index ab37e47b513..6f4f63f0f9d 100644 --- a/tests/models/cvt/test_modeling_cvt.py +++ b/tests/models/cvt/test_modeling_cvt.py @@ -55,8 +55,8 @@ class CvtModelTester: batch_size=13, image_size=64, num_channels=3, - embed_dim=[16, 48, 96], - num_heads=[1, 3, 6], + embed_dim=[16, 32, 48], + num_heads=[1, 2, 3], depth=[1, 2, 10], patch_sizes=[7, 3, 3], patch_stride=[4, 2, 2], @@ -247,10 +247,6 @@ class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: diff --git a/tests/models/cvt/test_modeling_tf_cvt.py b/tests/models/cvt/test_modeling_tf_cvt.py index d1d5835d7bc..ecb672d422a 100644 --- a/tests/models/cvt/test_modeling_tf_cvt.py +++ b/tests/models/cvt/test_modeling_tf_cvt.py @@ -45,8 +45,8 @@ class TFCvtModelTester: batch_size=13, image_size=64, num_channels=3, - embed_dim=[16, 48, 96], - num_heads=[1, 3, 6], + embed_dim=[16, 32, 48], + num_heads=[1, 2, 3], depth=[1, 2, 10], patch_sizes=[7, 3, 3], patch_stride=[4, 2, 2], diff --git a/tests/models/deta/test_modeling_deta.py b/tests/models/deta/test_modeling_deta.py index 0693b030e29..d5bf32acaba 100644 --- a/tests/models/deta/test_modeling_deta.py +++ b/tests/models/deta/test_modeling_deta.py @@ -19,7 +19,7 @@ import inspect import math import unittest -from transformers import DetaConfig, is_torch_available, is_torchvision_available, is_vision_available +from transformers import DetaConfig, ResNetConfig, is_torch_available, is_torchvision_available, is_vision_available from transformers.file_utils import cached_property from transformers.testing_utils import require_torchvision, require_vision, slow, torch_device @@ -49,7 +49,7 @@ class DetaModelTester: batch_size=8, is_training=True, use_labels=True, - hidden_size=256, + hidden_size=32, num_hidden_layers=2, num_attention_heads=8, intermediate_size=4, @@ -118,6 +118,16 @@ class DetaModelTester: return config, pixel_values, pixel_mask, labels def get_config(self): + resnet_config = ResNetConfig( + num_channels=3, + embeddings_size=10, + hidden_sizes=[10, 20, 30, 40], + depths=[1, 1, 2, 1], + hidden_act="relu", + num_labels=3, + out_features=["stage2", "stage3", "stage4"], + out_indices=[2, 3, 4], + ) return DetaConfig( d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, @@ -134,6 +144,7 @@ class DetaModelTester: encoder_n_points=self.encoder_n_points, decoder_n_points=self.decoder_n_points, two_stage=self.two_stage, + backbone_config=resnet_config, ) def prepare_config_and_inputs_for_common(self): @@ -423,10 +434,6 @@ class DetaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin def test_tied_model_weights_key_ignore(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() diff --git a/tests/models/dpt/test_modeling_dpt.py b/tests/models/dpt/test_modeling_dpt.py index f9cb66607d0..62ac20df313 100644 --- a/tests/models/dpt/test_modeling_dpt.py +++ b/tests/models/dpt/test_modeling_dpt.py @@ -62,6 +62,7 @@ class DPTModelTester: attention_probs_dropout_prob=0.1, initializer_range=0.02, num_labels=3, + neck_hidden_sizes=[16, 16, 32, 32], is_hybrid=False, scope=None, ): @@ -84,6 +85,7 @@ class DPTModelTester: self.num_labels = num_labels self.scope = scope self.is_hybrid = is_hybrid + self.neck_hidden_sizes = neck_hidden_sizes # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 @@ -105,6 +107,7 @@ class DPTModelTester: patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, + fusion_hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, @@ -115,6 +118,7 @@ class DPTModelTester: is_decoder=False, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, + neck_hidden_sizes=self.neck_hidden_sizes, ) def create_and_check_model(self, config, pixel_values, labels): @@ -275,10 +279,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: diff --git a/tests/models/dpt/test_modeling_dpt_hybrid.py b/tests/models/dpt/test_modeling_dpt_hybrid.py index 4c32c76e865..7270f609c2b 100644 --- a/tests/models/dpt/test_modeling_dpt_hybrid.py +++ b/tests/models/dpt/test_modeling_dpt_hybrid.py @@ -62,7 +62,8 @@ class DPTModelTester: attention_probs_dropout_prob=0.1, initializer_range=0.02, num_labels=3, - backbone_featmap_shape=[1, 384, 24, 24], + backbone_featmap_shape=[1, 32, 24, 24], + neck_hidden_sizes=[16, 16, 32, 32], is_hybrid=True, scope=None, ): @@ -86,6 +87,7 @@ class DPTModelTester: self.backbone_featmap_shape = backbone_featmap_shape self.scope = scope self.is_hybrid = is_hybrid + self.neck_hidden_sizes = neck_hidden_sizes # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 @@ -108,7 +110,7 @@ class DPTModelTester: "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, - "hidden_sizes": [96, 192, 384, 768], + "hidden_sizes": [16, 16, 32, 32], "num_groups": 2, } @@ -117,6 +119,7 @@ class DPTModelTester: patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, + fusion_hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, @@ -129,6 +132,7 @@ class DPTModelTester: is_hybrid=self.is_hybrid, backbone_config=backbone_config, backbone_featmap_shape=self.backbone_featmap_shape, + neck_hidden_sizes=self.neck_hidden_sizes, ) def create_and_check_model(self, config, pixel_values, labels): @@ -289,10 +293,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: diff --git a/tests/models/efficientnet/test_modeling_efficientnet.py b/tests/models/efficientnet/test_modeling_efficientnet.py index e77c17a7a6a..52a7ec4a7dd 100644 --- a/tests/models/efficientnet/test_modeling_efficientnet.py +++ b/tests/models/efficientnet/test_modeling_efficientnet.py @@ -49,7 +49,7 @@ class EfficientNetModelTester: num_channels=3, kernel_sizes=[3, 3, 5], in_channels=[32, 16, 24], - out_channels=[16, 24, 40], + out_channels=[16, 24, 20], strides=[1, 1, 2], num_block_repeats=[1, 1, 2], expand_ratios=[1, 6, 6], @@ -223,10 +223,6 @@ class EfficientNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.Test config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: diff --git a/tests/models/encodec/test_modeling_encodec.py b/tests/models/encodec/test_modeling_encodec.py index b8883314619..8f1b06da06c 100644 --- a/tests/models/encodec/test_modeling_encodec.py +++ b/tests/models/encodec/test_modeling_encodec.py @@ -77,16 +77,25 @@ class EncodecModelTester: batch_size=12, num_channels=2, is_training=False, - num_hidden_layers=4, intermediate_size=40, + hidden_size=32, + num_filters=8, + num_residual_layers=1, + upsampling_ratios=[8, 4], + num_lstm_layers=1, + codebook_size=64, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.is_training = is_training - - self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size + self.hidden_size = hidden_size + self.num_filters = num_filters + self.num_residual_layers = num_residual_layers + self.upsampling_ratios = upsampling_ratios + self.num_lstm_layers = num_lstm_layers + self.codebook_size = codebook_size def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0) @@ -99,7 +108,16 @@ class EncodecModelTester: return config, inputs_dict def get_config(self): - return EncodecConfig(audio_channels=self.num_channels, chunk_in_sec=None) + return EncodecConfig( + audio_channels=self.num_channels, + chunk_in_sec=None, + hidden_size=self.hidden_size, + num_filters=self.num_filters, + num_residual_layers=self.num_residual_layers, + upsampling_ratios=self.upsampling_ratios, + num_lstm_layers=self.num_lstm_layers, + codebook_size=self.codebook_size, + ) def create_and_check_model_forward(self, config, inputs_dict): model = EncodecModel(config=config).to(torch_device).eval() @@ -397,10 +415,6 @@ class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase) msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - def test_identity_shortcut(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() config.use_conv_shortcut = False diff --git a/tests/models/esm/test_modeling_esm.py b/tests/models/esm/test_modeling_esm.py index fc1879e6bf4..2e5d48082be 100644 --- a/tests/models/esm/test_modeling_esm.py +++ b/tests/models/esm/test_modeling_esm.py @@ -279,10 +279,6 @@ class EsmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): def test_resize_tokens_embeddings(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @require_torch class EsmModelIntegrationTest(TestCasePlus): diff --git a/tests/models/esm/test_modeling_esmfold.py b/tests/models/esm/test_modeling_esmfold.py index bc5c10ae242..39f274af54d 100644 --- a/tests/models/esm/test_modeling_esmfold.py +++ b/tests/models/esm/test_modeling_esmfold.py @@ -100,6 +100,28 @@ class EsmFoldModelTester: return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): + esmfold_config = { + "trunk": { + "num_blocks": 2, + "sequence_state_dim": 64, + "pairwise_state_dim": 16, + "sequence_head_width": 4, + "pairwise_head_width": 4, + "position_bins": 4, + "chunk_size": 16, + "structure_module": { + "ipa_dim": 16, + "num_angles": 7, + "num_blocks": 2, + "num_heads_ipa": 4, + "pairwise_dim": 16, + "resnet_dim": 16, + "sequence_dim": 48, + }, + }, + "fp16_esm": False, + "lddt_head_hid_dim": 16, + } config = EsmConfig( vocab_size=33, hidden_size=self.hidden_size, @@ -114,7 +136,7 @@ class EsmFoldModelTester: type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=True, - esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False}, + esmfold_config=esmfold_config, ) return config @@ -126,8 +148,8 @@ class EsmFoldModelTester: result = model(input_ids) result = model(input_ids) - self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3)) - self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2)) + self.parent.assertEqual(result.positions.shape, (2, self.batch_size, self.seq_length, 14, 3)) + self.parent.assertEqual(result.angles.shape, (2, self.batch_size, self.seq_length, 7, 2)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() @@ -243,10 +265,6 @@ class EsmFoldModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase) def test_multi_gpu_data_parallel_forward(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @require_torch class EsmModelIntegrationTest(TestCasePlus): diff --git a/tests/models/flava/test_modeling_flava.py b/tests/models/flava/test_modeling_flava.py index cef39224da3..f1221f1061c 100644 --- a/tests/models/flava/test_modeling_flava.py +++ b/tests/models/flava/test_modeling_flava.py @@ -92,7 +92,7 @@ class FlavaImageModelTester: num_channels=3, qkv_bias=True, mask_token=True, - vocab_size=8192, + vocab_size=99, ): self.parent = parent self.batch_size = batch_size @@ -321,10 +321,6 @@ class FlavaImageModelTest(ModelTesterMixin, unittest.TestCase): def test_save_load_fast_init_to_base(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: @@ -341,7 +337,7 @@ class FlavaTextModelTester: is_training=True, use_input_mask=True, use_token_type_ids=True, - vocab_size=30522, + vocab_size=102, type_vocab_size=2, max_position_embeddings=512, position_embedding_type="absolute", @@ -476,10 +472,6 @@ class FlavaTextModelTest(ModelTesterMixin, unittest.TestCase): def test_save_load_fast_init_to_base(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: @@ -632,10 +624,6 @@ class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase): def test_save_load_fast_init_to_base(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: @@ -644,11 +632,23 @@ class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase): class FlavaImageCodebookTester: - def __init__(self, parent, batch_size=12, image_size=112, num_channels=3): + def __init__( + self, + parent, + batch_size=12, + image_size=112, + num_channels=3, + hidden_size=32, + num_groups=2, + vocab_size=99, + ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels + self.hidden_size = hidden_size + self.num_groups = num_groups + self.vocab_size = vocab_size def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) @@ -657,7 +657,9 @@ class FlavaImageCodebookTester: return config, pixel_values def get_config(self): - return FlavaImageCodebookConfig() + return FlavaImageCodebookConfig( + hidden_size=self.hidden_size, num_groups=self.num_groups, vocab_size=self.vocab_size + ) def create_and_check_model(self, config, pixel_values): model = FlavaImageCodebook(config=config) @@ -743,10 +745,6 @@ class FlavaImageCodebookTest(ModelTesterMixin, unittest.TestCase): def test_save_load_fast_init_to_base(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: @@ -929,10 +927,6 @@ class FlavaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return diff --git a/tests/models/git/test_modeling_git.py b/tests/models/git/test_modeling_git.py index 5997230b16e..ed094db4a05 100644 --- a/tests/models/git/test_modeling_git.py +++ b/tests/models/git/test_modeling_git.py @@ -203,7 +203,7 @@ class GitModelTester: use_labels=True, vocab_size=99, hidden_size=32, - num_hidden_layers=5, + num_hidden_layers=4, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", @@ -268,6 +268,10 @@ class GitModelTester: "num_channels": self.num_channels, "image_size": self.image_size, "patch_size": self.patch_size, + "hidden_size": self.hidden_size, + "projection_dim": 32, + "num_hidden_layers": self.num_hidden_layers, + "num_attention_heads": self.num_attention_heads, }, vocab_size=self.vocab_size, hidden_size=self.hidden_size, @@ -454,10 +458,6 @@ class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, def test_greedy_generate_dict_outputs_use_cache(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @require_torch @require_vision diff --git a/tests/models/gptsan_japanese/test_modeling_gptsan_japanese.py b/tests/models/gptsan_japanese/test_modeling_gptsan_japanese.py index 0738b294c03..54a98cf70fd 100644 --- a/tests/models/gptsan_japanese/test_modeling_gptsan_japanese.py +++ b/tests/models/gptsan_japanese/test_modeling_gptsan_japanese.py @@ -38,7 +38,7 @@ class GPTSanJapaneseTester: def __init__( self, parent, - vocab_size=36000, + vocab_size=99, batch_size=13, num_contexts=7, # For common tests @@ -182,10 +182,6 @@ class GPTSanJapaneseTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas def test_model_parallelism(self): super().test_model_parallelism() - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @require_torch class GPTSanJapaneseForConditionalGenerationTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): @@ -216,10 +212,6 @@ class GPTSanJapaneseForConditionalGenerationTest(ModelTesterMixin, GenerationTes def test_model_parallelism(self): super().test_model_parallelism() - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_logits(self): model = GPTSanJapaneseForConditionalGeneration.from_pretrained("Tanrei/GPTSAN-japanese") diff --git a/tests/models/graphormer/test_modeling_graphormer.py b/tests/models/graphormer/test_modeling_graphormer.py index 60f188f3b2b..b6a994f4597 100644 --- a/tests/models/graphormer/test_modeling_graphormer.py +++ b/tests/models/graphormer/test_modeling_graphormer.py @@ -42,22 +42,22 @@ class GraphormerModelTester: self, parent, num_classes=1, - num_atoms=512 * 9, - num_edges=512 * 3, - num_in_degree=512, - num_out_degree=512, - num_spatial=512, - num_edge_dis=128, + num_atoms=32 * 9, + num_edges=32 * 3, + num_in_degree=32, + num_out_degree=32, + num_spatial=32, + num_edge_dis=16, multi_hop_max_dist=5, # sometimes is 20 - spatial_pos_max=1024, + spatial_pos_max=32, edge_type="multi_hop", init_fn=None, - max_nodes=512, + max_nodes=32, share_input_output_embed=False, - num_hidden_layers=12, - embedding_dim=768, - ffn_embedding_dim=768, - num_attention_heads=32, + num_hidden_layers=2, + embedding_dim=32, + ffn_embedding_dim=32, + num_attention_heads=4, dropout=0.1, attention_dropout=0.1, activation_dropout=0.1, @@ -470,10 +470,6 @@ class GraphormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_graph_classification(*config_and_inputs) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - @slow def test_model_from_pretrained(self): for model_name in GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: diff --git a/tests/models/levit/test_modeling_levit.py b/tests/models/levit/test_modeling_levit.py index b78554374e3..0e46f6f56dd 100644 --- a/tests/models/levit/test_modeling_levit.py +++ b/tests/models/levit/test_modeling_levit.py @@ -67,10 +67,10 @@ class LevitModelTester: stride=2, padding=1, patch_size=16, - hidden_sizes=[128, 256, 384], - num_attention_heads=[4, 6, 8], + hidden_sizes=[16, 32, 48], + num_attention_heads=[1, 2, 3], depths=[2, 3, 4], - key_dim=[16, 16, 16], + key_dim=[8, 8, 8], drop_path_rate=0, mlp_ratio=[2, 2, 2], attention_ratio=[2, 2, 2], @@ -282,10 +282,6 @@ class LevitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): check_hidden_states_output(inputs_dict, config, model_class) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) diff --git a/tests/models/mask2former/test_modeling_mask2former.py b/tests/models/mask2former/test_modeling_mask2former.py index c492bbb7664..898f2199922 100644 --- a/tests/models/mask2former/test_modeling_mask2former.py +++ b/tests/models/mask2former/test_modeling_mask2former.py @@ -54,6 +54,8 @@ class Mask2FormerModelTester: max_size=32 * 8, num_labels=4, hidden_dim=64, + num_attention_heads=4, + num_hidden_layers=2, ): self.parent = parent self.batch_size = batch_size @@ -66,6 +68,8 @@ class Mask2FormerModelTester: self.num_labels = num_labels self.hidden_dim = hidden_dim self.mask_feature_size = hidden_dim + self.num_attention_heads = num_attention_heads + self.num_hidden_layers = num_hidden_layers def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( @@ -85,15 +89,25 @@ class Mask2FormerModelTester: def get_config(self): config = Mask2FormerConfig( hidden_size=self.hidden_dim, + num_attention_heads=self.num_attention_heads, + num_hidden_layers=self.num_hidden_layers, + encoder_feedforward_dim=16, + dim_feedforward=32, + num_queries=self.num_queries, + num_labels=self.num_labels, + decoder_layers=2, + encoder_layers=2, + feature_size=16, ) config.num_queries = self.num_queries config.num_labels = self.num_labels + config.backbone_config.embed_dim = 16 config.backbone_config.depths = [1, 1, 1, 1] + config.backbone_config.hidden_size = 16 config.backbone_config.num_channels = self.num_channels + config.backbone_config.num_heads = [1, 1, 2, 2] - config.encoder_feedforward_dim = 64 - config.dim_feedforward = 128 config.hidden_dim = self.hidden_dim config.mask_feature_size = self.hidden_dim config.feature_size = self.hidden_dim @@ -220,10 +234,6 @@ class Mask2FormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC def test_multi_gpu_data_parallel_forward(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() diff --git a/tests/models/maskformer/test_modeling_maskformer.py b/tests/models/maskformer/test_modeling_maskformer.py index 69cf21d566e..c69a0c94ced 100644 --- a/tests/models/maskformer/test_modeling_maskformer.py +++ b/tests/models/maskformer/test_modeling_maskformer.py @@ -85,9 +85,15 @@ class MaskFormerModelTester: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1], + embed_dim=16, + hidden_size=32, + num_heads=[1, 1, 2, 2], ), decoder_config=DetrConfig( - decoder_ffn_dim=128, + decoder_ffn_dim=64, + decoder_layers=2, + encoder_ffn_dim=64, + encoder_layers=2, num_queries=self.num_queries, decoder_attention_heads=2, d_model=self.mask_feature_size, @@ -224,10 +230,6 @@ class MaskFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa def test_multi_gpu_data_parallel_forward(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() diff --git a/tests/models/mobilevit/test_modeling_mobilevit.py b/tests/models/mobilevit/test_modeling_mobilevit.py index 350934ad051..2c01ea0c99b 100644 --- a/tests/models/mobilevit/test_modeling_mobilevit.py +++ b/tests/models/mobilevit/test_modeling_mobilevit.py @@ -56,7 +56,7 @@ class MobileViTModelTester: image_size=32, patch_size=2, num_channels=3, - last_hidden_size=640, + last_hidden_size=32, num_attention_heads=4, hidden_act="silu", conv_kernel_size=3, @@ -115,6 +115,8 @@ class MobileViTModelTester: attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, + hidden_sizes=[12, 16, 20], + neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32], ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): @@ -231,10 +233,6 @@ class MobileViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) diff --git a/tests/models/mobilevit/test_modeling_tf_mobilevit.py b/tests/models/mobilevit/test_modeling_tf_mobilevit.py index 4a3c4484d28..289d739774a 100644 --- a/tests/models/mobilevit/test_modeling_tf_mobilevit.py +++ b/tests/models/mobilevit/test_modeling_tf_mobilevit.py @@ -59,7 +59,7 @@ class TFMobileViTModelTester: image_size=32, patch_size=2, num_channels=3, - last_hidden_size=640, + last_hidden_size=32, num_attention_heads=4, hidden_act="silu", conv_kernel_size=3, @@ -118,6 +118,8 @@ class TFMobileViTModelTester: attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, + hidden_sizes=[12, 16, 20], + neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32], ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): diff --git a/tests/models/mobilevitv2/test_modeling_mobilevitv2.py b/tests/models/mobilevitv2/test_modeling_mobilevitv2.py index 7f5c332a616..b1961b2e6d4 100644 --- a/tests/models/mobilevitv2/test_modeling_mobilevitv2.py +++ b/tests/models/mobilevitv2/test_modeling_mobilevitv2.py @@ -115,6 +115,9 @@ class MobileViTV2ModelTester: width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, + base_attn_unit_dims=[16, 24, 32], + n_attn_blocks=[1, 1, 2], + aspp_out_channels=32, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): @@ -225,10 +228,6 @@ class MobileViTV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC def test_multi_gpu_data_parallel_forward(self): pass - @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") - def test_model_is_small(self): - pass - def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() diff --git a/tests/test_modeling_common.py b/tests/test_modeling_common.py index 0d5080ec5aa..a394723e53c 100755 --- a/tests/test_modeling_common.py +++ b/tests/test_modeling_common.py @@ -2708,7 +2708,7 @@ class ModelTesterMixin: def test_model_is_small(self): # Just a consistency check to make sure we are not running tests on 80M parameter models. config, _ = self.model_tester.prepare_config_and_inputs_for_common() - # print(config) + print(config) for model_class in self.all_model_classes: model = model_class(config)