mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
tokenization abstract class - tests for examples
This commit is contained in:
parent
a4f980547f
commit
36bca545ff
400
examples/run_squad.py
Normal file
400
examples/run_squad.py
Normal file
@ -0,0 +1,400 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Run BERT on SQuAD."""
|
||||
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
from io import open
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
||||
TensorDataset)
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
from pytorch_transformers import WEIGHTS_NAME, CONFIG_NAME
|
||||
from pytorch_transformers.modeling_bert import BertForQuestionAnswering
|
||||
from pytorch_transformers.optimization import BertAdam, WarmupLinearSchedule
|
||||
from pytorch_transformers.tokenization_bert import BertTokenizer
|
||||
|
||||
from utils_squad import read_squad_examples, convert_examples_to_features, RawResult, write_predictions
|
||||
|
||||
if sys.version_info[0] == 2:
|
||||
import cPickle as pickle
|
||||
else:
|
||||
import pickle
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
## Required parameters
|
||||
parser.add_argument("--bert_model", default=None, type=str, required=True,
|
||||
help="Bert pre-trained model selected in the list: bert-base-uncased, "
|
||||
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
|
||||
"bert-base-multilingual-cased, bert-base-chinese.")
|
||||
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
||||
help="The output directory where the model checkpoints and predictions will be written.")
|
||||
|
||||
## Other parameters
|
||||
parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
|
||||
parser.add_argument("--predict_file", default=None, type=str,
|
||||
help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
|
||||
parser.add_argument("--max_seq_length", default=384, type=int,
|
||||
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
|
||||
"longer than this will be truncated, and sequences shorter than this will be padded.")
|
||||
parser.add_argument("--doc_stride", default=128, type=int,
|
||||
help="When splitting up a long document into chunks, how much stride to take between chunks.")
|
||||
parser.add_argument("--max_query_length", default=64, type=int,
|
||||
help="The maximum number of tokens for the question. Questions longer than this will "
|
||||
"be truncated to this length.")
|
||||
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
|
||||
parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
|
||||
parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
|
||||
parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
|
||||
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
|
||||
parser.add_argument("--num_train_epochs", default=3.0, type=float,
|
||||
help="Total number of training epochs to perform.")
|
||||
parser.add_argument("--warmup_proportion", default=0.1, type=float,
|
||||
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
|
||||
"of training.")
|
||||
parser.add_argument("--n_best_size", default=20, type=int,
|
||||
help="The total number of n-best predictions to generate in the nbest_predictions.json "
|
||||
"output file.")
|
||||
parser.add_argument("--max_answer_length", default=30, type=int,
|
||||
help="The maximum length of an answer that can be generated. This is needed because the start "
|
||||
"and end predictions are not conditioned on one another.")
|
||||
parser.add_argument("--verbose_logging", action='store_true',
|
||||
help="If true, all of the warnings related to data processing will be printed. "
|
||||
"A number of warnings are expected for a normal SQuAD evaluation.")
|
||||
parser.add_argument("--no_cuda",
|
||||
action='store_true',
|
||||
help="Whether not to use CUDA when available")
|
||||
parser.add_argument('--seed',
|
||||
type=int,
|
||||
default=42,
|
||||
help="random seed for initialization")
|
||||
parser.add_argument('--gradient_accumulation_steps',
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
||||
parser.add_argument("--do_lower_case",
|
||||
action='store_true',
|
||||
help="Whether to lower case the input text. True for uncased models, False for cased models.")
|
||||
parser.add_argument("--local_rank",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="local_rank for distributed training on gpus")
|
||||
parser.add_argument('--fp16',
|
||||
action='store_true',
|
||||
help="Whether to use 16-bit float precision instead of 32-bit")
|
||||
parser.add_argument('--overwrite_output_dir',
|
||||
action='store_true',
|
||||
help="Overwrite the content of the output directory")
|
||||
parser.add_argument('--loss_scale',
|
||||
type=float, default=0,
|
||||
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
|
||||
"0 (default value): dynamic loss scaling.\n"
|
||||
"Positive power of 2: static loss scaling value.\n")
|
||||
parser.add_argument('--version_2_with_negative',
|
||||
action='store_true',
|
||||
help='If true, the SQuAD examples contain some that do not have an answer.')
|
||||
parser.add_argument('--null_score_diff_threshold',
|
||||
type=float, default=0.0,
|
||||
help="If null_score - best_non_null is greater than the threshold predict null.")
|
||||
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
||||
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
|
||||
if args.server_ip and args.server_port:
|
||||
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
||||
import ptvsd
|
||||
print("Waiting for debugger attach")
|
||||
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
||||
ptvsd.wait_for_attach()
|
||||
|
||||
if args.local_rank == -1 or args.no_cuda:
|
||||
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
||||
n_gpu = torch.cuda.device_count()
|
||||
else:
|
||||
torch.cuda.set_device(args.local_rank)
|
||||
device = torch.device("cuda", args.local_rank)
|
||||
n_gpu = 1
|
||||
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
||||
torch.distributed.init_process_group(backend='nccl')
|
||||
|
||||
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
||||
datefmt = '%m/%d/%Y %H:%M:%S',
|
||||
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
||||
|
||||
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
|
||||
device, n_gpu, bool(args.local_rank != -1), args.fp16))
|
||||
|
||||
if args.gradient_accumulation_steps < 1:
|
||||
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
|
||||
args.gradient_accumulation_steps))
|
||||
|
||||
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
|
||||
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
if n_gpu > 0:
|
||||
torch.cuda.manual_seed_all(args.seed)
|
||||
|
||||
if not args.do_train and not args.do_predict:
|
||||
raise ValueError("At least one of `do_train` or `do_predict` must be True.")
|
||||
|
||||
if args.do_train:
|
||||
if not args.train_file:
|
||||
raise ValueError(
|
||||
"If `do_train` is True, then `train_file` must be specified.")
|
||||
if args.do_predict:
|
||||
if not args.predict_file:
|
||||
raise ValueError(
|
||||
"If `do_predict` is True, then `predict_file` must be specified.")
|
||||
|
||||
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
|
||||
raise ValueError("Output directory {} already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
|
||||
if not os.path.exists(args.output_dir):
|
||||
os.makedirs(args.output_dir)
|
||||
|
||||
if args.local_rank not in [-1, 0]:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
|
||||
model = BertForQuestionAnswering.from_pretrained(args.bert_model)
|
||||
if args.local_rank == 0:
|
||||
torch.distributed.barrier()
|
||||
|
||||
if args.fp16:
|
||||
model.half()
|
||||
model.to(device)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(model,
|
||||
device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
elif n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
if args.do_train:
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
# Prepare data loader
|
||||
train_examples = read_squad_examples(
|
||||
input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
|
||||
cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
|
||||
list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
|
||||
try:
|
||||
with open(cached_train_features_file, "rb") as reader:
|
||||
train_features = pickle.load(reader)
|
||||
except:
|
||||
train_features = convert_examples_to_features(
|
||||
examples=train_examples,
|
||||
tokenizer=tokenizer,
|
||||
max_seq_length=args.max_seq_length,
|
||||
doc_stride=args.doc_stride,
|
||||
max_query_length=args.max_query_length,
|
||||
is_training=True)
|
||||
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
|
||||
logger.info(" Saving train features into cached file %s", cached_train_features_file)
|
||||
with open(cached_train_features_file, "wb") as writer:
|
||||
pickle.dump(train_features, writer)
|
||||
|
||||
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
|
||||
all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
|
||||
all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
|
||||
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
|
||||
all_start_positions, all_end_positions)
|
||||
if args.local_rank == -1:
|
||||
train_sampler = RandomSampler(train_data)
|
||||
else:
|
||||
train_sampler = DistributedSampler(train_data)
|
||||
|
||||
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
|
||||
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
||||
# if args.local_rank != -1:
|
||||
# num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
|
||||
|
||||
# Prepare optimizer
|
||||
param_optimizer = list(model.named_parameters())
|
||||
|
||||
# hack to remove pooler, which is not used
|
||||
# thus it produce None grad that break apex
|
||||
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
|
||||
|
||||
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
||||
optimizer_grouped_parameters = [
|
||||
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
||||
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
||||
]
|
||||
|
||||
if args.fp16:
|
||||
try:
|
||||
from apex.optimizers import FP16_Optimizer
|
||||
from apex.optimizers import FusedAdam
|
||||
except ImportError:
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
|
||||
|
||||
optimizer = FusedAdam(optimizer_grouped_parameters,
|
||||
lr=args.learning_rate,
|
||||
bias_correction=False,
|
||||
max_grad_norm=1.0)
|
||||
if args.loss_scale == 0:
|
||||
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
|
||||
else:
|
||||
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
|
||||
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
|
||||
t_total=num_train_optimization_steps)
|
||||
else:
|
||||
optimizer = BertAdam(optimizer_grouped_parameters,
|
||||
lr=args.learning_rate,
|
||||
warmup=args.warmup_proportion,
|
||||
t_total=num_train_optimization_steps)
|
||||
|
||||
global_step = 0
|
||||
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num orig examples = %d", len(train_examples))
|
||||
logger.info(" Num split examples = %d", len(train_features))
|
||||
logger.info(" Batch size = %d", args.train_batch_size)
|
||||
logger.info(" Num steps = %d", num_train_optimization_steps)
|
||||
|
||||
model.train()
|
||||
for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
|
||||
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
||||
if n_gpu == 1:
|
||||
batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
|
||||
input_ids, input_mask, segment_ids, start_positions, end_positions = batch
|
||||
loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
|
||||
if n_gpu > 1:
|
||||
loss = loss.mean() # mean() to average on multi-gpu.
|
||||
if args.gradient_accumulation_steps > 1:
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
|
||||
if args.fp16:
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
if (step + 1) % args.gradient_accumulation_steps == 0:
|
||||
if args.fp16:
|
||||
# modify learning rate with special warm up BERT uses
|
||||
# if args.fp16 is False, BertAdam is used and handles this automatically
|
||||
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr_this_step
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
global_step += 1
|
||||
if args.local_rank in [-1, 0]:
|
||||
if not args.fp16:
|
||||
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar('loss', loss.item(), global_step)
|
||||
|
||||
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
||||
# Save a trained model, configuration and tokenizer
|
||||
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
||||
|
||||
# If we save using the predefined names, we can load using `from_pretrained`
|
||||
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
|
||||
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
|
||||
|
||||
torch.save(model_to_save.state_dict(), output_model_file)
|
||||
model_to_save.config.to_json_file(output_config_file)
|
||||
tokenizer.save_vocabulary(args.output_dir)
|
||||
|
||||
# Load a trained model and vocabulary that you have fine-tuned
|
||||
model = BertForQuestionAnswering.from_pretrained(args.output_dir)
|
||||
tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
|
||||
|
||||
# Good practice: save your training arguments together with the trained model
|
||||
output_args_file = os.path.join(args.output_dir, 'training_args.bin')
|
||||
torch.save(args, output_args_file)
|
||||
else:
|
||||
model = BertForQuestionAnswering.from_pretrained(args.bert_model)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
||||
eval_examples = read_squad_examples(
|
||||
input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
|
||||
eval_features = convert_examples_to_features(
|
||||
examples=eval_examples,
|
||||
tokenizer=tokenizer,
|
||||
max_seq_length=args.max_seq_length,
|
||||
doc_stride=args.doc_stride,
|
||||
max_query_length=args.max_query_length,
|
||||
is_training=False)
|
||||
|
||||
logger.info("***** Running predictions *****")
|
||||
logger.info(" Num orig examples = %d", len(eval_examples))
|
||||
logger.info(" Num split examples = %d", len(eval_features))
|
||||
logger.info(" Batch size = %d", args.predict_batch_size)
|
||||
|
||||
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
||||
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
||||
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
|
||||
# Run prediction for full data
|
||||
eval_sampler = SequentialSampler(eval_data)
|
||||
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
|
||||
|
||||
model.eval()
|
||||
all_results = []
|
||||
logger.info("Start evaluating")
|
||||
for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]):
|
||||
if len(all_results) % 1000 == 0:
|
||||
logger.info("Processing example: %d" % (len(all_results)))
|
||||
input_ids = input_ids.to(device)
|
||||
input_mask = input_mask.to(device)
|
||||
segment_ids = segment_ids.to(device)
|
||||
with torch.no_grad():
|
||||
batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
|
||||
for i, example_index in enumerate(example_indices):
|
||||
start_logits = batch_start_logits[i].detach().cpu().tolist()
|
||||
end_logits = batch_end_logits[i].detach().cpu().tolist()
|
||||
eval_feature = eval_features[example_index.item()]
|
||||
unique_id = int(eval_feature.unique_id)
|
||||
all_results.append(RawResult(unique_id=unique_id,
|
||||
start_logits=start_logits,
|
||||
end_logits=end_logits))
|
||||
output_prediction_file = os.path.join(args.output_dir, "predictions.json")
|
||||
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
|
||||
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
|
||||
write_predictions(eval_examples, eval_features, all_results,
|
||||
args.n_best_size, args.max_answer_length,
|
||||
args.do_lower_case, output_prediction_file,
|
||||
output_nbest_file, output_null_log_odds_file, args.verbose_logging,
|
||||
args.version_2_with_negative, args.null_score_diff_threshold)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
48
examples/test_examples.py
Normal file
48
examples/test_examples.py
Normal file
@ -0,0 +1,48 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 HuggingFace Inc..
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
import unittest
|
||||
import argparse
|
||||
|
||||
try:
|
||||
# python 3.4+ can use builtin unittest.mock instead of mock package
|
||||
from unittest.mock import patch
|
||||
except ImportError:
|
||||
from mock import patch
|
||||
|
||||
import run_bert_squad as rbs
|
||||
|
||||
def get_setup_file():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-f')
|
||||
args = parser.parse_args()
|
||||
return args.f
|
||||
|
||||
class ExamplesTests(unittest.TestCase):
|
||||
|
||||
def test_run_squad(self):
|
||||
testargs = ["prog", "-f", "/home/test/setup.py"]
|
||||
with patch.object(sys, 'argv', testargs):
|
||||
setup = get_setup_file()
|
||||
assert setup == "/home/test/setup.py"
|
||||
# rbs.main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -5,6 +5,7 @@ from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
|
||||
from .tokenization_gpt2 import GPT2Tokenizer
|
||||
from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE
|
||||
from .tokenization_xlm import XLMTokenizer
|
||||
from .tokenization_utils import (PreTrainedTokenizer, clean_up_tokenization)
|
||||
|
||||
from .modeling_bert import (BertConfig, BertModel, BertForPreTraining,
|
||||
BertForMaskedLM, BertForNextSentencePrediction,
|
||||
@ -26,11 +27,10 @@ from .modeling_xlnet import (XLNetConfig,
|
||||
from .modeling_xlm import (XLMConfig, XLMModel,
|
||||
XLMWithLMHeadModel, XLMForSequenceClassification,
|
||||
XLMForQuestionAnswering)
|
||||
from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, TF_WEIGHTS_NAME,
|
||||
PretrainedConfig, PreTrainedModel, prune_layer, Conv1D)
|
||||
|
||||
from .optimization import BertAdam
|
||||
from .optimization_openai import OpenAIAdam
|
||||
|
||||
from .file_utils import (PYTORCH_PRETRAINED_BERT_CACHE, cached_path)
|
||||
|
||||
from .model_utils import (WEIGHTS_NAME, CONFIG_NAME, TF_WEIGHTS_NAME,
|
||||
PretrainedConfig, PreTrainedModel, prune_layer, Conv1D)
|
||||
|
@ -29,7 +29,7 @@ from torch import nn
|
||||
from torch.nn import CrossEntropyLoss, MSELoss
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
|
||||
from .modeling_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -31,7 +31,7 @@ from torch.nn import CrossEntropyLoss
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
|
||||
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
|
||||
PreTrainedModel, prune_conv1d_layer, SequenceSummary)
|
||||
from .modeling_bert import BertLayerNorm as LayerNorm
|
||||
|
||||
|
@ -31,7 +31,7 @@ from torch.nn import CrossEntropyLoss
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
|
||||
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
|
||||
PreTrainedModel, prune_conv1d_layer, SequenceSummary)
|
||||
from .modeling_bert import BertLayerNorm as LayerNorm
|
||||
|
||||
|
@ -37,7 +37,7 @@ from torch.nn.parameter import Parameter
|
||||
from .modeling_bert import BertLayerNorm as LayerNorm
|
||||
from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax, sample_logits
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel
|
||||
from .modeling_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -598,9 +598,3 @@ def prune_layer(layer, index, dim=None):
|
||||
return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
|
||||
else:
|
||||
raise ValueError("Can't prune layer of class {}".format(layer.__class__))
|
||||
|
||||
def clean_up_tokenization(out_string):
|
||||
out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ','
|
||||
).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't"
|
||||
).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re")
|
||||
return out_string
|
@ -35,7 +35,7 @@ from torch.nn import functional as F
|
||||
from torch.nn import CrossEntropyLoss, MSELoss
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
|
||||
from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
|
||||
prune_linear_layer, SequenceSummary, SQuADHead)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -32,7 +32,7 @@ from torch.nn import functional as F
|
||||
from torch.nn import CrossEntropyLoss, MSELoss
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
|
||||
from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
|
||||
SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits)
|
||||
|
||||
|
||||
|
@ -1,50 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 HuggingFace Inc..
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import unittest
|
||||
import json
|
||||
import random
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
import torch
|
||||
|
||||
from pytorch_transformers import PretrainedConfig, PreTrainedModel
|
||||
from pytorch_transformers.modeling_bert import BertModel, BertConfig, PRETRAINED_MODEL_ARCHIVE_MAP, PRETRAINED_CONFIG_ARCHIVE_MAP
|
||||
|
||||
|
||||
class ModelUtilsTest(unittest.TestCase):
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in list(PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
||||
config = BertConfig.from_pretrained(model_name)
|
||||
self.assertIsNotNone(config)
|
||||
self.assertIsInstance(config, PretrainedConfig)
|
||||
|
||||
model = BertModel.from_pretrained(model_name)
|
||||
self.assertIsNotNone(model)
|
||||
self.assertIsInstance(model, PreTrainedModel)
|
||||
|
||||
config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
||||
model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
||||
self.assertEqual(model.config.output_attentions, True)
|
||||
self.assertEqual(model.config.output_hidden_states, True)
|
||||
self.assertEqual(model.config, config)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -26,7 +26,7 @@ from pytorch_transformers import (BertConfig, BertModel, BertForMaskedLM,
|
||||
BertForTokenClassification, BertForMultipleChoice)
|
||||
from pytorch_transformers.modeling_bert import PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
|
||||
from .model_tests_commons import (create_and_check_commons, ConfigTester, ids_tensor)
|
||||
from .modeling_tests_commons import (create_and_check_commons, ConfigTester, ids_tensor)
|
||||
|
||||
|
||||
class BertModelTest(unittest.TestCase):
|
||||
|
@ -28,7 +28,7 @@ import torch
|
||||
from pytorch_transformers import (GPT2Config, GPT2Model,
|
||||
GPT2LMHeadModel, GPT2DoubleHeadsModel)
|
||||
|
||||
from .model_tests_commons import (create_and_check_commons, ConfigTester, GPTModelTester)
|
||||
from .modeling_tests_commons import (create_and_check_commons, ConfigTester, GPTModelTester)
|
||||
|
||||
class GPT2ModelTest(unittest.TestCase):
|
||||
|
||||
|
@ -24,7 +24,7 @@ import torch
|
||||
from pytorch_transformers import (OpenAIGPTConfig, OpenAIGPTModel,
|
||||
OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel)
|
||||
|
||||
from .model_tests_commons import (create_and_check_commons, ConfigTester, GPTModelTester)
|
||||
from .modeling_tests_commons import (create_and_check_commons, ConfigTester, GPTModelTester)
|
||||
|
||||
class OpenAIModelTest(unittest.TestCase):
|
||||
|
||||
|
@ -28,7 +28,7 @@ import torch
|
||||
from pytorch_transformers import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel)
|
||||
from pytorch_transformers.modeling_transfo_xl import PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
|
||||
from .model_tests_commons import ConfigTester, create_and_check_commons, ids_tensor
|
||||
from .modeling_tests_commons import ConfigTester, create_and_check_commons, ids_tensor
|
||||
|
||||
class TransfoXLModelTest(unittest.TestCase):
|
||||
class TransfoXLModelTester(object):
|
||||
|
@ -16,17 +16,10 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import unittest
|
||||
import json
|
||||
import random
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
import torch
|
||||
|
||||
from pytorch_transformers import PretrainedConfig, PreTrainedModel
|
||||
from pytorch_transformers.modeling_bert import BertModel, BertConfig, PRETRAINED_MODEL_ARCHIVE_MAP, PRETRAINED_CONFIG_ARCHIVE_MAP
|
||||
from pytorch_transformers.modeling_bert import BertModel, BertConfig, PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
|
||||
|
||||
class ModelUtilsTest(unittest.TestCase):
|
@ -23,7 +23,7 @@ import pytest
|
||||
from pytorch_transformers import (XLMConfig, XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification)
|
||||
from pytorch_transformers.modeling_xlm import PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
|
||||
from .model_tests_commons import (create_and_check_commons, ConfigTester, ids_tensor)
|
||||
from .modeling_tests_commons import (create_and_check_commons, ConfigTester, ids_tensor)
|
||||
|
||||
|
||||
class XLMModelTest(unittest.TestCase):
|
||||
|
@ -28,7 +28,7 @@ import torch
|
||||
from pytorch_transformers import (XLNetConfig, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering)
|
||||
from pytorch_transformers.modeling_xlnet import PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
|
||||
from .model_tests_commons import ConfigTester, create_and_check_commons, ids_tensor
|
||||
from .modeling_tests_commons import ConfigTester, create_and_check_commons, ids_tensor
|
||||
|
||||
class XLNetModelTest(unittest.TestCase):
|
||||
class XLNetModelTester(object):
|
||||
|
@ -24,7 +24,7 @@ from pytorch_transformers.tokenization_bert import (BasicTokenizer,
|
||||
BertTokenizer,
|
||||
WordpieceTokenizer,
|
||||
_is_control, _is_punctuation,
|
||||
_is_whitespace, PRETRAINED_VOCAB_ARCHIVE_MAP)
|
||||
_is_whitespace)
|
||||
|
||||
from .tokenization_tests_commons import create_and_check_tokenizer_commons
|
||||
|
||||
@ -49,14 +49,6 @@ class TokenizationTest(unittest.TestCase):
|
||||
|
||||
os.remove(vocab_file)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_tokenizer_from_pretrained(self):
|
||||
cache_dir = "/tmp/pytorch_transformers_test/"
|
||||
for model_name in list(PRETRAINED_VOCAB_ARCHIVE_MAP.keys())[:1]:
|
||||
tokenizer = BertTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
||||
shutil.rmtree(cache_dir)
|
||||
self.assertIsNotNone(tokenizer)
|
||||
|
||||
def test_chinese(self):
|
||||
tokenizer = BasicTokenizer()
|
||||
|
||||
|
@ -17,10 +17,8 @@ from __future__ import absolute_import, division, print_function, unicode_litera
|
||||
import os
|
||||
import unittest
|
||||
import json
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
from pytorch_transformers.tokenization_gpt2 import GPT2Tokenizer, PRETRAINED_VOCAB_ARCHIVE_MAP
|
||||
from pytorch_transformers.tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
from .tokenization_tests_commons import create_and_check_tokenizer_commons
|
||||
|
||||
@ -56,13 +54,6 @@ class GPT2TokenizationTest(unittest.TestCase):
|
||||
os.remove(vocab_file)
|
||||
os.remove(merges_file)
|
||||
|
||||
# @pytest.mark.slow
|
||||
def test_tokenizer_from_pretrained(self):
|
||||
cache_dir = "/tmp/pytorch_transformers_test/"
|
||||
for model_name in list(PRETRAINED_VOCAB_ARCHIVE_MAP.keys())[:1]:
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
||||
shutil.rmtree(cache_dir)
|
||||
self.assertIsNotNone(tokenizer)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
@ -20,7 +20,7 @@ import json
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
from pytorch_transformers.tokenization_openai import OpenAIGPTTokenizer, PRETRAINED_VOCAB_ARCHIVE_MAP
|
||||
from pytorch_transformers.tokenization_openai import OpenAIGPTTokenizer
|
||||
|
||||
from.tokenization_tests_commons import create_and_check_tokenizer_commons
|
||||
|
||||
@ -58,14 +58,6 @@ class OpenAIGPTTokenizationTest(unittest.TestCase):
|
||||
self.assertListEqual(
|
||||
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_tokenizer_from_pretrained(self):
|
||||
cache_dir = "/tmp/pytorch_transformers_test/"
|
||||
for model_name in list(PRETRAINED_VOCAB_ARCHIVE_MAP.keys())[:1]:
|
||||
tokenizer = OpenAIGPTTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
||||
shutil.rmtree(cache_dir)
|
||||
self.assertIsNotNone(tokenizer)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
@ -20,7 +20,7 @@ from io import open
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
from pytorch_transformers.tokenization_transfo_xl import TransfoXLTokenizer, PRETRAINED_VOCAB_ARCHIVE_MAP
|
||||
from pytorch_transformers.tokenization_transfo_xl import TransfoXLTokenizer
|
||||
|
||||
from.tokenization_tests_commons import create_and_check_tokenizer_commons
|
||||
|
||||
@ -59,13 +59,6 @@ class TransfoXLTokenizationTest(unittest.TestCase):
|
||||
tokenizer.tokenize(u" \tHeLLo ! how \n Are yoU ? "),
|
||||
["HeLLo", "!", "how", "Are", "yoU", "?"])
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_tokenizer_from_pretrained(self):
|
||||
cache_dir = "/tmp/pytorch_transformers_test/"
|
||||
for model_name in list(PRETRAINED_VOCAB_ARCHIVE_MAP.keys())[:1]:
|
||||
tokenizer = TransfoXLTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
||||
shutil.rmtree(cache_dir)
|
||||
self.assertIsNotNone(tokenizer)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
36
pytorch_transformers/tests/tokenization_utils_test.py
Normal file
36
pytorch_transformers/tests/tokenization_utils_test.py
Normal file
@ -0,0 +1,36 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 HuggingFace Inc..
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
|
||||
from pytorch_transformers import PreTrainedTokenizer
|
||||
from pytorch_transformers.tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
class TokenizerUtilsTest(unittest.TestCase):
|
||||
def check_tokenizer_from_pretrained(self, tokenizer_class):
|
||||
s3_models = list(tokenizer_class.max_model_input_sizes.keys())
|
||||
for model_name in s3_models[:1]:
|
||||
tokenizer = tokenizer_class.from_pretrained(model_name)
|
||||
self.assertIsNotNone(tokenizer)
|
||||
self.assertIsInstance(tokenizer, PreTrainedTokenizer)
|
||||
|
||||
def test_pretrained_tokenizers(self):
|
||||
self.check_tokenizer_from_pretrained(GPT2Tokenizer)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -20,9 +20,9 @@ import json
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
from pytorch_transformers.tokenization_xlm import XLMTokenizer, PRETRAINED_VOCAB_ARCHIVE_MAP
|
||||
from pytorch_transformers.tokenization_xlm import XLMTokenizer
|
||||
|
||||
from.tokenization_tests_commons import create_and_check_tokenizer_commons
|
||||
from .tokenization_tests_commons import create_and_check_tokenizer_commons
|
||||
|
||||
class XLMTokenizationTest(unittest.TestCase):
|
||||
|
||||
@ -57,14 +57,6 @@ class XLMTokenizationTest(unittest.TestCase):
|
||||
self.assertListEqual(
|
||||
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_tokenizer_from_pretrained(self):
|
||||
cache_dir = "/tmp/pytorch_transformers_test/"
|
||||
for model_name in list(PRETRAINED_VOCAB_ARCHIVE_MAP.keys())[:1]:
|
||||
tokenizer = XLMTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
||||
shutil.rmtree(cache_dir)
|
||||
self.assertIsNotNone(tokenizer)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
@ -19,9 +19,7 @@ import unittest
|
||||
import shutil
|
||||
import pytest
|
||||
|
||||
from pytorch_transformers.tokenization_xlnet import (XLNetTokenizer,
|
||||
PRETRAINED_VOCAB_ARCHIVE_MAP,
|
||||
SPIECE_UNDERLINE)
|
||||
from pytorch_transformers.tokenization_xlnet import (XLNetTokenizer, SPIECE_UNDERLINE)
|
||||
|
||||
from.tokenization_tests_commons import create_and_check_tokenizer_commons
|
||||
|
||||
@ -60,14 +58,6 @@ class XLNetTokenizationTest(unittest.TestCase):
|
||||
SPIECE_UNDERLINE + u'is', SPIECE_UNDERLINE + u'f', u'al', u's',
|
||||
u'<unk>', u'.'])
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_tokenizer_from_pretrained(self):
|
||||
cache_dir = "/tmp/pytorch_transformers_test/"
|
||||
for model_name in list(PRETRAINED_VOCAB_ARCHIVE_MAP.keys())[:1]:
|
||||
tokenizer = XLNetTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
||||
shutil.rmtree(cache_dir)
|
||||
self.assertIsNotNone(tokenizer)
|
||||
|
||||
def test_tokenizer_lower(self):
|
||||
tokenizer = XLNetTokenizer(SAMPLE_VOCAB, do_lower_case=True)
|
||||
tokens = tokenizer.tokenize(u"I was born in 92000, and this is falsé.")
|
||||
|
@ -23,11 +23,15 @@ import unicodedata
|
||||
from io import open
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import clean_up_tokenization
|
||||
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
||||
VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
'vocab_file':
|
||||
{
|
||||
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
|
||||
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
|
||||
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
|
||||
@ -41,8 +45,9 @@ PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
||||
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
|
||||
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
|
||||
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
|
||||
}
|
||||
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
|
||||
}}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
'bert-base-uncased': 512,
|
||||
'bert-large-uncased': 512,
|
||||
'bert-base-cased': 512,
|
||||
@ -57,7 +62,6 @@ PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
|
||||
'bert-large-cased-whole-word-masking-finetuned-squad': 512,
|
||||
'bert-base-cased-finetuned-mrpc': 512,
|
||||
}
|
||||
VOCAB_NAME = 'vocab.txt'
|
||||
|
||||
def load_vocab(vocab_file):
|
||||
"""Loads a vocabulary file into a dictionary."""
|
||||
@ -83,8 +87,11 @@ def whitespace_tokenize(text):
|
||||
return tokens
|
||||
|
||||
|
||||
class BertTokenizer(object):
|
||||
class BertTokenizer(PreTrainedTokenizer):
|
||||
"""Runs end-to-end tokenization: punctuation splitting + wordpiece"""
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True,
|
||||
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
|
||||
@ -203,7 +210,7 @@ class BertTokenizer(object):
|
||||
"""Save the tokenizer vocabulary to a directory or file."""
|
||||
index = 0
|
||||
if os.path.isdir(vocab_path):
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_NAME)
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
|
||||
with open(vocab_file, "w", encoding="utf-8") as writer:
|
||||
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
||||
if index != token_index:
|
||||
@ -215,13 +222,10 @@ class BertTokenizer(object):
|
||||
return (vocab_file,)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
|
||||
""" Instantiate a BertTokenizer from pre-trained vocabulary files.
|
||||
"""
|
||||
Instantiate a PreTrainedBertModel from a pre-trained model file.
|
||||
Download and cache the pre-trained model file if needed.
|
||||
"""
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||
if pretrained_model_name_or_path in PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES:
|
||||
if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True):
|
||||
logger.warning("The pre-trained model you are loading is a cased model but you have not set "
|
||||
"`do_lower_case` to False. We are setting `do_lower_case=False` for you but "
|
||||
@ -232,40 +236,8 @@ class BertTokenizer(object):
|
||||
"`do_lower_case` to False. We are setting `do_lower_case=True` for you "
|
||||
"but you may want to check this behavior.")
|
||||
kwargs['do_lower_case'] = True
|
||||
else:
|
||||
vocab_file = pretrained_model_name_or_path
|
||||
if os.path.isdir(vocab_file):
|
||||
vocab_file = os.path.join(vocab_file, VOCAB_NAME)
|
||||
# redirect to the cache, if necessary
|
||||
try:
|
||||
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
|
||||
except EnvironmentError:
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
logger.error(
|
||||
"Couldn't reach server at '{}' to download vocabulary.".format(
|
||||
vocab_file))
|
||||
else:
|
||||
logger.error(
|
||||
"Model name '{}' was not found in model name list ({}). "
|
||||
"We assumed '{}' was a path or url but couldn't find any file "
|
||||
"associated to this path or url.".format(
|
||||
pretrained_model_name_or_path,
|
||||
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
||||
vocab_file))
|
||||
return None
|
||||
if resolved_vocab_file == vocab_file:
|
||||
logger.info("loading vocabulary file {}".format(vocab_file))
|
||||
else:
|
||||
logger.info("loading vocabulary file {} from cache at {}".format(
|
||||
vocab_file, resolved_vocab_file))
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
|
||||
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
|
||||
# than the number of positional embeddings
|
||||
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
|
||||
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
|
||||
# Instantiate tokenizer.
|
||||
tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
|
||||
return tokenizer
|
||||
|
||||
return super(BertTokenizer, cls)._from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
|
||||
|
||||
|
||||
class BasicTokenizer(object):
|
||||
|
@ -23,8 +23,6 @@ import os
|
||||
import regex as re
|
||||
from io import open
|
||||
|
||||
from .model_utils import clean_up_tokenization
|
||||
|
||||
try:
|
||||
from functools import lru_cache
|
||||
except ImportError:
|
||||
@ -33,24 +31,38 @@ except ImportError:
|
||||
def lru_cache():
|
||||
return lambda func: func
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
||||
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
|
||||
'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-vocab.json",
|
||||
VOCAB_FILES_NAMES = {
|
||||
'vocab_file': 'vocab.json',
|
||||
'merges_file': 'merges.txt',
|
||||
'special_tokens_file': 'special_tokens.txt'
|
||||
}
|
||||
PRETRAINED_MERGES_ARCHIVE_MAP = {
|
||||
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
|
||||
'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-merges.txt",
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
'vocab_file':
|
||||
{
|
||||
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
|
||||
'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-vocab.json",
|
||||
},
|
||||
'merges_file':
|
||||
{
|
||||
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
|
||||
'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-merges.txt",
|
||||
},
|
||||
'special_tokens_file':
|
||||
{
|
||||
'gpt2': None,
|
||||
'gpt2-medium': None,
|
||||
}
|
||||
}
|
||||
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
'gpt2': 1024,
|
||||
'gpt2-medium': 1024,
|
||||
}
|
||||
VOCAB_NAME = 'vocab.json'
|
||||
MERGES_NAME = 'merges.txt'
|
||||
SPECIAL_TOKENS_NAME = 'special_tokens.txt'
|
||||
|
||||
@lru_cache()
|
||||
def bytes_to_unicode():
|
||||
@ -87,70 +99,16 @@ def get_pairs(word):
|
||||
prev_char = char
|
||||
return pairs
|
||||
|
||||
class GPT2Tokenizer(object):
|
||||
class GPT2Tokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
GPT-2 BPE tokenizer. Peculiarities:
|
||||
- Byte-level BPE
|
||||
"""
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
|
||||
"""
|
||||
Instantiate a GPT2Tokenizer from a pre-trained model file.
|
||||
Download and cache the pre-trained model file if needed.
|
||||
"""
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||
special_tokens_file = None
|
||||
else:
|
||||
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
|
||||
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
|
||||
special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME)
|
||||
if not os.path.exists(special_tokens_file):
|
||||
special_tokens_file = None
|
||||
else:
|
||||
logger.info("loading special tokens file {}".format(special_tokens_file))
|
||||
# redirect to the cache, if necessary
|
||||
try:
|
||||
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
|
||||
resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
|
||||
except EnvironmentError:
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
logger.error(
|
||||
"Couldn't reach server at '{}' to download vocabulary.".format(
|
||||
vocab_file))
|
||||
else:
|
||||
logger.error(
|
||||
"Model name '{}' was not found in model name list ({}). "
|
||||
"We assumed '{}' was a path or url but couldn't find files {} and {} "
|
||||
"at this path or url.".format(
|
||||
pretrained_model_name_or_path,
|
||||
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
||||
pretrained_model_name_or_path,
|
||||
vocab_file, merges_file))
|
||||
return None
|
||||
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
|
||||
logger.info("loading vocabulary file {}".format(vocab_file))
|
||||
logger.info("loading merges file {}".format(merges_file))
|
||||
else:
|
||||
logger.info("loading vocabulary file {} from cache at {}".format(
|
||||
vocab_file, resolved_vocab_file))
|
||||
logger.info("loading merges file {} from cache at {}".format(
|
||||
merges_file, resolved_merges_file))
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
|
||||
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
|
||||
# than the number of positional embeddings
|
||||
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
|
||||
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
|
||||
# Instantiate tokenizer.
|
||||
if special_tokens_file and 'special_tokens' not in kwargs:
|
||||
special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
|
||||
else:
|
||||
special_tokens = kwargs.pop('special_tokens', [])
|
||||
tokenizer = cls(resolved_vocab_file, resolved_merges_file, special_tokens=special_tokens, *inputs, **kwargs)
|
||||
return tokenizer
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(self, vocab_file, merges_file, errors='replace', special_tokens=None, max_len=None):
|
||||
def __init__(self, vocab_file, merges_file, special_tokens_file=None, special_tokens=None, errors='replace', max_len=None):
|
||||
self.max_len = max_len if max_len is not None else int(1e12)
|
||||
self.encoder = json.load(open(vocab_file))
|
||||
self.decoder = {v:k for k,v in self.encoder.items()}
|
||||
@ -165,9 +123,16 @@ class GPT2Tokenizer(object):
|
||||
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
||||
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
||||
|
||||
all_special_tokens = []
|
||||
if special_tokens_file is not None:
|
||||
special_tokens_to_add = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
|
||||
all_special_tokens.extend(special_tokens_to_add)
|
||||
if special_tokens is not None and special_tokens:
|
||||
all_special_tokens.extend(special_tokens)
|
||||
|
||||
self.special_tokens = {}
|
||||
self.special_tokens_decoder = {}
|
||||
self.set_special_tokens(special_tokens)
|
||||
self.set_special_tokens(all_special_tokens)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.encoder) + len(self.special_tokens)
|
||||
@ -285,9 +250,9 @@ class GPT2Tokenizer(object):
|
||||
if not os.path.isdir(vocab_path):
|
||||
logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
|
||||
return
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_NAME)
|
||||
merge_file = os.path.join(vocab_path, MERGES_NAME)
|
||||
special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
|
||||
merge_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['merges_file'])
|
||||
special_tokens_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['special_tokens_file'])
|
||||
|
||||
with open(vocab_file, 'w', encoding='utf-8') as f:
|
||||
f.write(json.dumps(self.encoder, ensure_ascii=False))
|
||||
|
@ -26,23 +26,35 @@ from io import open
|
||||
from tqdm import tqdm
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import clean_up_tokenization
|
||||
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
|
||||
from .tokenization_bert import BasicTokenizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
||||
'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json",
|
||||
VOCAB_FILES_NAMES = {
|
||||
'vocab_file': 'vocab.json',
|
||||
'merges_file': 'merges.txt',
|
||||
'special_tokens_file': 'special_tokens.txt'
|
||||
}
|
||||
PRETRAINED_MERGES_ARCHIVE_MAP = {
|
||||
'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt",
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
'vocab_file':
|
||||
{
|
||||
'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json",
|
||||
},
|
||||
'merges_file':
|
||||
{
|
||||
'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt",
|
||||
},
|
||||
'special_tokens_file':
|
||||
{
|
||||
'openai-gpt': None,
|
||||
}
|
||||
}
|
||||
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
'openai-gpt': 512,
|
||||
}
|
||||
VOCAB_NAME = 'vocab.json'
|
||||
MERGES_NAME = 'merges.txt'
|
||||
SPECIAL_TOKENS_NAME = 'special_tokens.txt'
|
||||
|
||||
def get_pairs(word):
|
||||
"""
|
||||
@ -71,7 +83,7 @@ def text_standardize(text):
|
||||
text = re.sub(r'[^\S\n]+', ' ', text)
|
||||
return text.strip()
|
||||
|
||||
class OpenAIGPTTokenizer(object):
|
||||
class OpenAIGPTTokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
BPE tokenizer. Peculiarities:
|
||||
- lower case all inputs
|
||||
@ -79,65 +91,11 @@ class OpenAIGPTTokenizer(object):
|
||||
- argument special_tokens and function set_special_tokens:
|
||||
can be used to add additional symbols (ex: "__classify__") to a vocabulary.
|
||||
"""
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
|
||||
"""
|
||||
Instantiate a PreTrainedBertModel from a pre-trained model file.
|
||||
Download and cache the pre-trained model file if needed.
|
||||
"""
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||
special_tokens_file = None
|
||||
else:
|
||||
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
|
||||
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
|
||||
special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME)
|
||||
if not os.path.exists(special_tokens_file):
|
||||
special_tokens_file = None
|
||||
else:
|
||||
logger.info("loading special tokens file {}".format(special_tokens_file))
|
||||
# redirect to the cache, if necessary
|
||||
try:
|
||||
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
|
||||
resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
|
||||
except EnvironmentError:
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
logger.error(
|
||||
"Couldn't reach server at '{}' to download vocabulary.".format(
|
||||
vocab_file))
|
||||
else:
|
||||
logger.error(
|
||||
"Model name '{}' was not found in model name list ({}). "
|
||||
"We assumed '{}' was a path or url but couldn't find files {} and {} "
|
||||
"at this path or url.".format(
|
||||
pretrained_model_name_or_path,
|
||||
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
||||
pretrained_model_name_or_path,
|
||||
vocab_file, merges_file))
|
||||
return None
|
||||
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
|
||||
logger.info("loading vocabulary file {}".format(vocab_file))
|
||||
logger.info("loading merges file {}".format(merges_file))
|
||||
else:
|
||||
logger.info("loading vocabulary file {} from cache at {}".format(
|
||||
vocab_file, resolved_vocab_file))
|
||||
logger.info("loading merges file {} from cache at {}".format(
|
||||
merges_file, resolved_merges_file))
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
|
||||
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
|
||||
# than the number of positional embeddings
|
||||
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
|
||||
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
|
||||
# Instantiate tokenizer.
|
||||
if special_tokens_file and 'special_tokens' not in kwargs:
|
||||
special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
|
||||
else:
|
||||
special_tokens = kwargs.pop('special_tokens', [])
|
||||
tokenizer = cls(resolved_vocab_file, resolved_merges_file, special_tokens=special_tokens, *inputs, **kwargs)
|
||||
return tokenizer
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(self, vocab_file, merges_file, special_tokens=None, max_len=None):
|
||||
def __init__(self, vocab_file, merges_file, special_tokens_file=None, special_tokens=None, max_len=None):
|
||||
try:
|
||||
import ftfy
|
||||
import spacy
|
||||
@ -156,9 +114,17 @@ class OpenAIGPTTokenizer(object):
|
||||
merges = [tuple(merge.split()) for merge in merges]
|
||||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||||
self.cache = {}
|
||||
|
||||
all_special_tokens = []
|
||||
if special_tokens_file is not None:
|
||||
special_tokens_to_add = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
|
||||
all_special_tokens.extend(special_tokens_to_add)
|
||||
if special_tokens is not None and special_tokens:
|
||||
all_special_tokens.extend(special_tokens)
|
||||
|
||||
self.special_tokens = {}
|
||||
self.special_tokens_decoder = {}
|
||||
self.set_special_tokens(special_tokens)
|
||||
self.set_special_tokens(all_special_tokens)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.encoder) + len(self.special_tokens)
|
||||
@ -286,9 +252,9 @@ class OpenAIGPTTokenizer(object):
|
||||
if not os.path.isdir(vocab_path):
|
||||
logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
|
||||
return
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_NAME)
|
||||
merge_file = os.path.join(vocab_path, MERGES_NAME)
|
||||
special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
|
||||
merge_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['merges_file'])
|
||||
special_tokens_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['special_tokens_file'])
|
||||
|
||||
with open(vocab_file, 'w', encoding='utf-8') as f:
|
||||
f.write(json.dumps(self.encoder, ensure_ascii=False))
|
||||
|
@ -31,7 +31,7 @@ import torch
|
||||
import numpy as np
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import clean_up_tokenization
|
||||
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
|
||||
|
||||
if sys.version_info[0] == 2:
|
||||
import cPickle as pickle
|
||||
@ -41,66 +41,35 @@ else:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
||||
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-vocab.bin",
|
||||
VOCAB_FILES_NAMES = {'pretrained_vocab_file': 'vocab.bin'}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
'pretrained_vocab_file':
|
||||
{
|
||||
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-vocab.bin",
|
||||
}
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
'transfo-xl-wt103': 512,
|
||||
}
|
||||
VOCAB_NAME = 'vocab.bin'
|
||||
|
||||
PRETRAINED_CORPUS_ARCHIVE_MAP = {
|
||||
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-corpus.bin",
|
||||
}
|
||||
CORPUS_NAME = 'corpus.bin'
|
||||
|
||||
class TransfoXLTokenizer(object):
|
||||
class TransfoXLTokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl
|
||||
"""
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
|
||||
"""
|
||||
Instantiate a TransfoXLTokenizer.
|
||||
The TransfoXLTokenizer.
|
||||
"""
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||
else:
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
|
||||
else:
|
||||
vocab_file = pretrained_model_name_or_path
|
||||
# redirect to the cache, if necessary
|
||||
try:
|
||||
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
|
||||
except EnvironmentError:
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
logger.error(
|
||||
"Couldn't reach server at '{}' to download vocabulary.".format(
|
||||
vocab_file))
|
||||
else:
|
||||
logger.error(
|
||||
"Model name '{}' was not found in model name list ({}). "
|
||||
"We assumed '{}' was a path or url but couldn't find files {} "
|
||||
"at this path or url.".format(
|
||||
pretrained_model_name_or_path,
|
||||
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
||||
pretrained_model_name_or_path,
|
||||
vocab_file))
|
||||
return None
|
||||
if resolved_vocab_file == vocab_file:
|
||||
logger.info("loading vocabulary file {}".format(vocab_file))
|
||||
else:
|
||||
logger.info("loading vocabulary file {} from cache at {}".format(
|
||||
vocab_file, resolved_vocab_file))
|
||||
|
||||
# Instantiate tokenizer.
|
||||
tokenizer = cls(*inputs, **kwargs)
|
||||
vocab_dict = torch.load(resolved_vocab_file)
|
||||
for key, value in vocab_dict.items():
|
||||
tokenizer.__dict__[key] = value
|
||||
return tokenizer
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(self, special=[], min_freq=0, max_size=None, lower_case=False,
|
||||
delimiter=None, vocab_file=None, never_split=("<unk>", "<eos>", "<formula>")):
|
||||
delimiter=None, vocab_file=None, pretrained_vocab_file=None,
|
||||
never_split=("<unk>", "<eos>", "<formula>")):
|
||||
self.counter = Counter()
|
||||
self.special = special
|
||||
self.min_freq = min_freq
|
||||
@ -110,6 +79,13 @@ class TransfoXLTokenizer(object):
|
||||
self.vocab_file = vocab_file
|
||||
self.never_split = never_split
|
||||
|
||||
if pretrained_vocab_file is not None:
|
||||
# Hack because, honestly this tokenizer was not made to be used
|
||||
# in a library like ours, at all.
|
||||
vocab_dict = torch.load(pretrained_vocab_file)
|
||||
for key, value in vocab_dict.items():
|
||||
self.__dict__[key] = value
|
||||
|
||||
if vocab_file is not None:
|
||||
self.build_vocab()
|
||||
|
||||
@ -157,7 +133,7 @@ class TransfoXLTokenizer(object):
|
||||
"""Save the tokenizer vocabulary to a directory or file."""
|
||||
index = 0
|
||||
if os.path.isdir(vocab_path):
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_NAME)
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['pretrained_vocab_file'])
|
||||
torch.save(self.__dict__, vocab_file)
|
||||
return (vocab_file,)
|
||||
|
||||
@ -484,7 +460,7 @@ class TransfoXLCorpus(object):
|
||||
"We assumed '{}' was a path or url but couldn't find files {} "
|
||||
"at this path or url.".format(
|
||||
pretrained_model_name_or_path,
|
||||
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
||||
', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys()),
|
||||
pretrained_model_name_or_path,
|
||||
corpus_file))
|
||||
return None
|
||||
|
114
pytorch_transformers/tokenization_utils.py
Normal file
114
pytorch_transformers/tokenization_utils.py
Normal file
@ -0,0 +1,114 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tokenization classes for OpenAI GPT."""
|
||||
from __future__ import (absolute_import, division, print_function,
|
||||
unicode_literals)
|
||||
|
||||
import sys
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import regex as re
|
||||
from io import open
|
||||
|
||||
try:
|
||||
from functools import lru_cache
|
||||
except ImportError:
|
||||
# Just a dummy decorator to get the checks to run on python2
|
||||
# because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
|
||||
def lru_cache():
|
||||
return lambda func: func
|
||||
|
||||
from .file_utils import cached_path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PreTrainedTokenizer(object):
|
||||
""" An abstract class to handle dowloading and loading pretrained tokenizers.
|
||||
"""
|
||||
vocab_files_names = {}
|
||||
pretrained_vocab_files_map = {}
|
||||
max_model_input_sizes = {}
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *inputs, **kwargs):
|
||||
return cls._from_pretrained(*inputs, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def _from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
|
||||
"""
|
||||
Instantiate a PreTrainedTokenizer from pre-trained vocabulary files.
|
||||
Download and cache the vocabulary files if needed.
|
||||
"""
|
||||
s3_models = list(cls.max_model_input_sizes.keys())
|
||||
vocab_files = {}
|
||||
if pretrained_model_name_or_path in s3_models:
|
||||
for file_id, map_list in cls.pretrained_vocab_files_map.items():
|
||||
vocab_files[file_id] = map_list[pretrained_model_name_or_path]
|
||||
else:
|
||||
for file_id, file_name in cls.vocab_files_names.items():
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
|
||||
else:
|
||||
full_file_name = pretrained_model_name_or_path
|
||||
if not os.path.exists(full_file_name):
|
||||
logger.info("Didn't find file {}. We don't load it.".format(full_file_name))
|
||||
full_file_name = None
|
||||
vocab_files[file_id] = full_file_name
|
||||
# redirect to the cache, if necessary
|
||||
try:
|
||||
resolved_vocab_files = {}
|
||||
for file_id, file_path in vocab_files.items():
|
||||
if file_path is None:
|
||||
resolved_vocab_files[file_id] = None
|
||||
else:
|
||||
resolved_vocab_files[file_id] = cached_path(file_path, cache_dir=cache_dir)
|
||||
except EnvironmentError:
|
||||
if pretrained_model_name_or_path in s3_models:
|
||||
logger.error("Couldn't reach server to download vocabulary.")
|
||||
else:
|
||||
logger.error(
|
||||
"Model name '{}' was not found in model name list ({}). "
|
||||
"We assumed '{}' was a path or url but couldn't find files {} "
|
||||
"at this path or url.".format(
|
||||
pretrained_model_name_or_path, ', '.join(s3_models),
|
||||
pretrained_model_name_or_path, str(vocab_files.keys())))
|
||||
return None
|
||||
|
||||
for file_id, file_path in vocab_files.items():
|
||||
if file_path == resolved_vocab_files[file_id]:
|
||||
logger.info("loading file {}".format(file_path))
|
||||
else:
|
||||
logger.info("loading file {} from cache at {}".format(
|
||||
file_path, resolved_vocab_files[file_id]))
|
||||
|
||||
if pretrained_model_name_or_path in cls.max_model_input_sizes:
|
||||
# if we're using a pretrained model, ensure the tokenizer
|
||||
# wont index sequences longer than the number of positional embeddings
|
||||
max_len = cls.max_model_input_sizes[pretrained_model_name_or_path]
|
||||
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
|
||||
|
||||
# Instantiate tokenizer.
|
||||
tokenizer = cls(*inputs, **resolved_vocab_files, **kwargs)
|
||||
|
||||
return tokenizer
|
||||
|
||||
|
||||
def clean_up_tokenization(out_string):
|
||||
out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ','
|
||||
).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't"
|
||||
).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re")
|
||||
return out_string
|
@ -26,30 +26,42 @@ from io import open
|
||||
from tqdm import tqdm
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import clean_up_tokenization
|
||||
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
|
||||
from .tokenization_bert import BasicTokenizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
||||
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-vocab.json",
|
||||
VOCAB_FILES_NAMES = {
|
||||
'vocab_file': 'vocab.json',
|
||||
'merges_file': 'merges.txt',
|
||||
'special_tokens_file': 'special_tokens.txt'
|
||||
}
|
||||
PRETRAINED_MERGES_ARCHIVE_MAP = {
|
||||
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-merges.txt",
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
'vocab_file':
|
||||
{
|
||||
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-vocab.json",
|
||||
},
|
||||
'merges_file':
|
||||
{
|
||||
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-merges.txt",
|
||||
},
|
||||
'special_tokens_file':
|
||||
{
|
||||
'xlm-mlm-en-2048': None,
|
||||
}
|
||||
}
|
||||
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
'xlm-mlm-en-2048': 512,
|
||||
}
|
||||
VOCAB_NAME = 'vocab.json'
|
||||
MERGES_NAME = 'merges.txt'
|
||||
SPECIAL_TOKENS_NAME = 'special_tokens.txt'
|
||||
|
||||
INDEX= {
|
||||
"bos_index": 0,
|
||||
"eos_index": 1,
|
||||
"pad_index": 2,
|
||||
"unk_index": 3,
|
||||
"mask_index": 5
|
||||
INDEX = {
|
||||
"bos_index": 0,
|
||||
"eos_index": 1,
|
||||
"pad_index": 2,
|
||||
"unk_index": 3,
|
||||
"mask_index": 5
|
||||
}
|
||||
|
||||
def get_pairs(word):
|
||||
@ -79,7 +91,7 @@ def text_standardize(text):
|
||||
text = re.sub(r'[^\S\n]+', ' ', text)
|
||||
return text.strip()
|
||||
|
||||
class XLMTokenizer(object):
|
||||
class XLMTokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
BPE tokenizer for XLM, adapted from OpenAI BPE tokenizer. Peculiarities:
|
||||
- lower case all inputs
|
||||
@ -87,65 +99,11 @@ class XLMTokenizer(object):
|
||||
- argument special_tokens and function set_special_tokens:
|
||||
can be used to add additional symbols (ex: "__classify__") to a vocabulary.
|
||||
"""
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
|
||||
"""
|
||||
Instantiate a PreTrainedBertModel from a pre-trained model file.
|
||||
Download and cache the pre-trained model file if needed.
|
||||
"""
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||
special_tokens_file = None
|
||||
else:
|
||||
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
|
||||
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
|
||||
special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME)
|
||||
if not os.path.exists(special_tokens_file):
|
||||
special_tokens_file = None
|
||||
else:
|
||||
logger.info("loading special tokens file {}".format(special_tokens_file))
|
||||
# redirect to the cache, if necessary
|
||||
try:
|
||||
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
|
||||
resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
|
||||
except EnvironmentError:
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
logger.error(
|
||||
"Couldn't reach server at '{}' to download vocabulary.".format(
|
||||
vocab_file))
|
||||
else:
|
||||
logger.error(
|
||||
"Model name '{}' was not found in model name list ({}). "
|
||||
"We assumed '{}' was a path or url but couldn't find files {} and {} "
|
||||
"at this path or url.".format(
|
||||
pretrained_model_name_or_path,
|
||||
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
||||
pretrained_model_name_or_path,
|
||||
vocab_file, merges_file))
|
||||
return None
|
||||
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
|
||||
logger.info("loading vocabulary file {}".format(vocab_file))
|
||||
logger.info("loading merges file {}".format(merges_file))
|
||||
else:
|
||||
logger.info("loading vocabulary file {} from cache at {}".format(
|
||||
vocab_file, resolved_vocab_file))
|
||||
logger.info("loading merges file {} from cache at {}".format(
|
||||
merges_file, resolved_merges_file))
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
|
||||
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
|
||||
# than the number of positional embeddings
|
||||
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
|
||||
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
|
||||
# Instantiate tokenizer.
|
||||
if special_tokens_file and 'special_tokens' not in kwargs:
|
||||
special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
|
||||
else:
|
||||
special_tokens = kwargs.pop('special_tokens', [])
|
||||
tokenizer = cls(resolved_vocab_file, resolved_merges_file, special_tokens=special_tokens, *inputs, **kwargs)
|
||||
return tokenizer
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(self, vocab_file, merges_file, special_tokens=None, max_len=None):
|
||||
def __init__(self, vocab_file, merges_file, special_tokens_file=None, special_tokens=None, max_len=None):
|
||||
try:
|
||||
import ftfy
|
||||
import spacy
|
||||
@ -164,9 +122,17 @@ class XLMTokenizer(object):
|
||||
merges = [tuple(merge.split()[:2]) for merge in merges]
|
||||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||||
self.cache = {}
|
||||
|
||||
all_special_tokens = []
|
||||
if special_tokens_file is not None:
|
||||
special_tokens_to_add = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
|
||||
all_special_tokens.extend(special_tokens_to_add)
|
||||
if special_tokens is not None and special_tokens:
|
||||
all_special_tokens.extend(special_tokens)
|
||||
|
||||
self.special_tokens = {}
|
||||
self.special_tokens_decoder = {}
|
||||
self.set_special_tokens(special_tokens)
|
||||
self.set_special_tokens(all_special_tokens)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.encoder) + len(self.special_tokens)
|
||||
@ -294,9 +260,9 @@ class XLMTokenizer(object):
|
||||
if not os.path.isdir(vocab_path):
|
||||
logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
|
||||
return
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_NAME)
|
||||
merge_file = os.path.join(vocab_path, MERGES_NAME)
|
||||
special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)
|
||||
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
|
||||
merge_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['merges_file'])
|
||||
special_tokens_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['special_tokens_file'])
|
||||
|
||||
with open(vocab_file, 'w', encoding='utf-8') as f:
|
||||
f.write(json.dumps(self.encoder, ensure_ascii=False))
|
||||
|
@ -27,15 +27,24 @@ import unicodedata
|
||||
import six
|
||||
|
||||
from .file_utils import cached_path
|
||||
from .model_utils import clean_up_tokenization
|
||||
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
||||
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
'vocab_file':
|
||||
{
|
||||
'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model",
|
||||
}
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
'xlnet-large-cased': 512,
|
||||
}
|
||||
|
||||
VOCAB_NAME = 'spiece.model'
|
||||
SPECIAL_TOKENS_NAME = 'special_tokens.txt'
|
||||
|
||||
SPIECE_UNDERLINE = u'▁'
|
||||
|
||||
@ -46,7 +55,7 @@ SEG_ID_CLS = 2
|
||||
SEG_ID_SEP = 3
|
||||
SEG_ID_PAD = 4
|
||||
|
||||
class XLNetTokenizer(object):
|
||||
class XLNetTokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
SentencePiece based tokenizer. Peculiarities:
|
||||
- requires SentencePiece: https://github.com/google/sentencepiece
|
||||
@ -63,64 +72,11 @@ class XLNetTokenizer(object):
|
||||
"<eod>" : 7,
|
||||
"<eop>" : 8,
|
||||
}
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
|
||||
"""
|
||||
Instantiate a PreTrainedBertModel from a pre-trained model file.
|
||||
Download and cache the pre-trained model file if needed.
|
||||
"""
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||
special_tokens_file = None
|
||||
if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True):
|
||||
logger.warning("The pre-trained model you are loading is a cased model but you have not set "
|
||||
"`do_lower_case` to False. We are setting `do_lower_case=False` for you but "
|
||||
"you may want to check this behavior.")
|
||||
kwargs['do_lower_case'] = False
|
||||
elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True):
|
||||
logger.warning("The pre-trained model you are loading is an uncased model but you have set "
|
||||
"`do_lower_case` to False. We are setting `do_lower_case=True` for you "
|
||||
"but you may want to check this behavior.")
|
||||
kwargs['do_lower_case'] = True
|
||||
else:
|
||||
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
|
||||
special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME)
|
||||
if not os.path.exists(special_tokens_file):
|
||||
special_tokens_file = None
|
||||
else:
|
||||
logger.info("loading special tokens file {}".format(special_tokens_file))
|
||||
# redirect to the cache, if necessary
|
||||
try:
|
||||
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
|
||||
except EnvironmentError:
|
||||
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||
logger.error(
|
||||
"Couldn't reach server at '{}' to download vocabulary.".format(
|
||||
vocab_file))
|
||||
else:
|
||||
logger.error(
|
||||
"Model name '{}' was not found in model name list ({}). "
|
||||
"We assumed '{}' was a path or url but couldn't find files {}"
|
||||
"at this path or url.".format(
|
||||
pretrained_model_name_or_path,
|
||||
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
||||
pretrained_model_name_or_path,
|
||||
vocab_file))
|
||||
return None
|
||||
if resolved_vocab_file == vocab_file:
|
||||
logger.info("loading vocabulary file {}".format(vocab_file))
|
||||
else:
|
||||
logger.info("loading vocabulary file {} from cache at {}".format(
|
||||
vocab_file, resolved_vocab_file))
|
||||
# Instantiate tokenizer.
|
||||
if special_tokens_file and 'special_tokens' not in kwargs:
|
||||
special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
|
||||
else:
|
||||
special_tokens = kwargs.pop('special_tokens', [])
|
||||
tokenizer = cls(resolved_vocab_file, special_tokens=special_tokens, *inputs, **kwargs)
|
||||
return tokenizer
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(self, vocab_file, special_tokens=None, max_len=None,
|
||||
def __init__(self, vocab_file, max_len=None,
|
||||
do_lower_case=False, remove_space=True, keep_accents=False):
|
||||
try:
|
||||
import sentencepiece as spm
|
||||
@ -136,9 +92,6 @@ class XLNetTokenizer(object):
|
||||
|
||||
self.sp_model = spm.SentencePieceProcessor()
|
||||
self.sp_model.Load(vocab_file)
|
||||
self.special_tokens = {}
|
||||
self.special_tokens_decoder = {}
|
||||
self.set_special_tokens(special_tokens)
|
||||
|
||||
@property
|
||||
def UNK_TOKEN(self):
|
||||
@ -181,7 +134,7 @@ class XLNetTokenizer(object):
|
||||
return self.special_symbols["<mask>"]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.encoder) + len(self.special_tokens)
|
||||
return len(self.sp_model)
|
||||
|
||||
def __getstate__(self):
|
||||
state = self.__dict__.copy()
|
||||
@ -198,19 +151,6 @@ class XLNetTokenizer(object):
|
||||
self.sp_model = spm.SentencePieceProcessor()
|
||||
self.sp_model.Load(self.vocab_file)
|
||||
|
||||
def set_special_tokens(self, special_tokens):
|
||||
""" Add a list of additional tokens to the encoder.
|
||||
The additional tokens are indexed starting from the last index of the
|
||||
current vocabulary in the order of the `special_tokens` list.
|
||||
"""
|
||||
if not special_tokens:
|
||||
self.special_tokens = {}
|
||||
self.special_tokens_decoder = {}
|
||||
return
|
||||
self.special_tokens = dict((tok, len(self.sp_model) + i) for i, tok in enumerate(special_tokens))
|
||||
self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
|
||||
logger.info("Special tokens: %s", str(self.special_tokens))
|
||||
|
||||
def preprocess_text(self, inputs):
|
||||
if self.remove_space:
|
||||
outputs = ' '.join(inputs.strip().split())
|
||||
@ -272,15 +212,9 @@ class XLNetTokenizer(object):
|
||||
""" Converts a sequence of tokens into ids using the vocab. """
|
||||
ids = []
|
||||
if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
|
||||
if tokens in self.special_tokens:
|
||||
return self.special_tokens[tokens]
|
||||
else:
|
||||
return self.sp_model.PieceToId(tokens)
|
||||
return self.sp_model.PieceToId(tokens)
|
||||
for token in tokens:
|
||||
if token in self.special_tokens:
|
||||
ids.append(self.special_tokens[token])
|
||||
else:
|
||||
ids.append(self.sp_model.PieceToId(token))
|
||||
ids.append(self.sp_model.PieceToId(token))
|
||||
if len(ids) > self.max_len:
|
||||
logger.warning(
|
||||
"Token indices sequence length is longer than the specified maximum "
|
||||
@ -289,15 +223,11 @@ class XLNetTokenizer(object):
|
||||
)
|
||||
return ids
|
||||
|
||||
def convert_ids_to_tokens(self, ids, return_unicode=True, skip_special_tokens=False):
|
||||
def convert_ids_to_tokens(self, ids, return_unicode=True):
|
||||
"""Converts a sequence of ids in tokens."""
|
||||
tokens = []
|
||||
for i in ids:
|
||||
if i in self.special_tokens_decoder:
|
||||
if not skip_special_tokens:
|
||||
tokens.append(self.special_tokens_decoder[i])
|
||||
else:
|
||||
tokens.append(self.sp_model.IdToPiece(i))
|
||||
tokens.append(self.sp_model.IdToPiece(i))
|
||||
|
||||
if six.PY2 and return_unicode:
|
||||
ret_pieces = []
|
||||
@ -311,9 +241,9 @@ class XLNetTokenizer(object):
|
||||
def encode(self, text, sample=False):
|
||||
return self.convert_tokens_to_ids(self.tokenize(text, sample=sample))
|
||||
|
||||
def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
|
||||
def decode(self, ids, clean_up_tokenization_spaces=True):
|
||||
"""Converts a sequence of ids in a string."""
|
||||
tokens = self.convert_ids_to_tokens(ids, skip_special_tokens=skip_special_tokens)
|
||||
tokens = self.convert_ids_to_tokens(ids)
|
||||
out_string = ''.join(tokens)
|
||||
if clean_up_tokenization_spaces:
|
||||
out_string = out_string.strip().replace('<unk>', '')
|
||||
@ -328,18 +258,7 @@ class XLNetTokenizer(object):
|
||||
logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
|
||||
return
|
||||
out_vocab_file = os.path.join(vocab_path, VOCAB_NAME)
|
||||
special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)
|
||||
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
|
||||
index = len(self.sp_model)
|
||||
with open(special_tokens_file, 'w', encoding='utf-8') as writer:
|
||||
for token, token_index in sorted(self.special_tokens.items(), key=lambda kv: kv[1]):
|
||||
if index != token_index:
|
||||
logger.warning("Saving special tokens vocabulary to {}: BPE indices are not consecutive."
|
||||
" Please check that the tokenizer is not corrupted!".format(special_tokens_file))
|
||||
index = token_index
|
||||
writer.write(token + u'\n')
|
||||
index += 1
|
||||
|
||||
return out_vocab_file, special_tokens_file
|
||||
return (out_vocab_file,)
|
||||
|
Loading…
Reference in New Issue
Block a user