mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 11:08:23 +06:00
265 lines
8.4 KiB
Python
265 lines
8.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Tokenization classes for XLNet model."""
|
|
from __future__ import (absolute_import, division, print_function,
|
|
unicode_literals)
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
import sys
|
|
from shutil import copyfile
|
|
from io import open
|
|
|
|
import unicodedata
|
|
import six
|
|
|
|
from .file_utils import cached_path
|
|
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}
|
|
|
|
PRETRAINED_VOCAB_FILES_MAP = {
|
|
'vocab_file':
|
|
{
|
|
'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model",
|
|
}
|
|
}
|
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|
'xlnet-large-cased': 512,
|
|
}
|
|
|
|
VOCAB_NAME = 'spiece.model'
|
|
|
|
SPIECE_UNDERLINE = u'▁'
|
|
|
|
# Segments (not really needed)
|
|
SEG_ID_A = 0
|
|
SEG_ID_B = 1
|
|
SEG_ID_CLS = 2
|
|
SEG_ID_SEP = 3
|
|
SEG_ID_PAD = 4
|
|
|
|
class XLNetTokenizer(PreTrainedTokenizer):
|
|
"""
|
|
SentencePiece based tokenizer. Peculiarities:
|
|
- requires SentencePiece: https://github.com/google/sentencepiece
|
|
"""
|
|
# Tokens
|
|
special_symbols = {
|
|
"<unk>" : 0,
|
|
"<s>" : 1,
|
|
"</s>" : 2,
|
|
"<cls>" : 3,
|
|
"<sep>" : 4,
|
|
"<pad>" : 5,
|
|
"<mask>" : 6,
|
|
"<eod>" : 7,
|
|
"<eop>" : 8,
|
|
}
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
|
|
|
def __init__(self, vocab_file, max_len=None,
|
|
do_lower_case=False, remove_space=True, keep_accents=False):
|
|
try:
|
|
import sentencepiece as spm
|
|
except ImportError:
|
|
logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
|
|
"pip install sentencepiece")
|
|
|
|
self.max_len = max_len if max_len is not None else int(1e12)
|
|
self.do_lower_case = do_lower_case
|
|
self.remove_space = remove_space
|
|
self.keep_accents = keep_accents
|
|
self.vocab_file = vocab_file
|
|
|
|
self.sp_model = spm.SentencePieceProcessor()
|
|
self.sp_model.Load(vocab_file)
|
|
|
|
@property
|
|
def UNK_TOKEN(self):
|
|
return "<unk>"
|
|
|
|
@property
|
|
def SEP_TOKEN(self):
|
|
return "<sep>"
|
|
|
|
@property
|
|
def PAD_TOKEN(self):
|
|
return "<pad>"
|
|
|
|
@property
|
|
def CLS_TOKEN(self):
|
|
return "<cls>"
|
|
|
|
@property
|
|
def MASK_TOKEN(self):
|
|
return "<mask>"
|
|
|
|
@property
|
|
def UNK_ID(self):
|
|
return self.special_symbols["<unk>"]
|
|
|
|
@property
|
|
def SEP_ID(self):
|
|
return self.special_symbols["<sep>"]
|
|
|
|
@property
|
|
def PAD_ID(self):
|
|
return self.special_symbols["<pad>"]
|
|
|
|
@property
|
|
def CLS_ID(self):
|
|
return self.special_symbols["<cls>"]
|
|
|
|
@property
|
|
def MASK_ID(self):
|
|
return self.special_symbols["<mask>"]
|
|
|
|
def __len__(self):
|
|
return len(self.sp_model)
|
|
|
|
def __getstate__(self):
|
|
state = self.__dict__.copy()
|
|
state["sp_model"] = None
|
|
return state
|
|
|
|
def __setstate__(self, d):
|
|
self.__dict__ = d
|
|
try:
|
|
import sentencepiece as spm
|
|
except ImportError:
|
|
logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
|
|
"pip install sentencepiece")
|
|
self.sp_model = spm.SentencePieceProcessor()
|
|
self.sp_model.Load(self.vocab_file)
|
|
|
|
def preprocess_text(self, inputs):
|
|
if self.remove_space:
|
|
outputs = ' '.join(inputs.strip().split())
|
|
else:
|
|
outputs = inputs
|
|
outputs = outputs.replace("``", '"').replace("''", '"')
|
|
|
|
if six.PY2 and isinstance(outputs, str):
|
|
outputs = outputs.decode('utf-8')
|
|
|
|
if not self.keep_accents:
|
|
outputs = unicodedata.normalize('NFKD', outputs)
|
|
outputs = ''.join([c for c in outputs if not unicodedata.combining(c)])
|
|
if self.do_lower_case:
|
|
outputs = outputs.lower()
|
|
|
|
return outputs
|
|
|
|
def tokenize(self, text, return_unicode=True, sample=False):
|
|
""" Tokenize a string.
|
|
return_unicode is used only for py2
|
|
"""
|
|
text = self.preprocess_text(text)
|
|
# note(zhiliny): in some systems, sentencepiece only accepts str for py2
|
|
if six.PY2 and isinstance(text, unicode):
|
|
text = text.encode('utf-8')
|
|
|
|
if not sample:
|
|
pieces = self.sp_model.EncodeAsPieces(text)
|
|
else:
|
|
pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
|
|
new_pieces = []
|
|
for piece in pieces:
|
|
if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit():
|
|
cur_pieces = self.sp_model.EncodeAsPieces(
|
|
piece[:-1].replace(SPIECE_UNDERLINE, ''))
|
|
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
|
|
if len(cur_pieces[0]) == 1:
|
|
cur_pieces = cur_pieces[1:]
|
|
else:
|
|
cur_pieces[0] = cur_pieces[0][1:]
|
|
cur_pieces.append(piece[-1])
|
|
new_pieces.extend(cur_pieces)
|
|
else:
|
|
new_pieces.append(piece)
|
|
|
|
# note(zhiliny): convert back to unicode for py2
|
|
if six.PY2 and return_unicode:
|
|
ret_pieces = []
|
|
for piece in new_pieces:
|
|
if isinstance(piece, str):
|
|
piece = piece.decode('utf-8')
|
|
ret_pieces.append(piece)
|
|
new_pieces = ret_pieces
|
|
|
|
return new_pieces
|
|
|
|
def convert_tokens_to_ids(self, tokens, sample=False):
|
|
""" Converts a sequence of tokens into ids using the vocab. """
|
|
ids = []
|
|
if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
|
|
return self.sp_model.PieceToId(tokens)
|
|
for token in tokens:
|
|
ids.append(self.sp_model.PieceToId(token))
|
|
if len(ids) > self.max_len:
|
|
logger.warning(
|
|
"Token indices sequence length is longer than the specified maximum "
|
|
" sequence length for this XLNet model ({} > {}). Running this"
|
|
" sequence through the model will result in indexing errors".format(len(ids), self.max_len)
|
|
)
|
|
return ids
|
|
|
|
def convert_ids_to_tokens(self, ids, return_unicode=True):
|
|
"""Converts a sequence of ids in tokens."""
|
|
tokens = []
|
|
for i in ids:
|
|
tokens.append(self.sp_model.IdToPiece(i))
|
|
|
|
if six.PY2 and return_unicode:
|
|
ret_pieces = []
|
|
for piece in tokens:
|
|
if isinstance(piece, str):
|
|
piece = piece.decode('utf-8')
|
|
ret_pieces.append(piece)
|
|
tokens = ret_pieces
|
|
return tokens
|
|
|
|
def encode(self, text, sample=False):
|
|
return self.convert_tokens_to_ids(self.tokenize(text, sample=sample))
|
|
|
|
def decode(self, ids, clean_up_tokenization_spaces=True):
|
|
"""Converts a sequence of ids in a string."""
|
|
tokens = self.convert_ids_to_tokens(ids)
|
|
out_string = ''.join(tokens)
|
|
if clean_up_tokenization_spaces:
|
|
out_string = out_string.strip().replace('<unk>', '')
|
|
out_string = clean_up_tokenization(out_string)
|
|
return out_string
|
|
|
|
def save_vocabulary(self, vocab_path):
|
|
""" Save the sentencepiece vocabulary (copy original file) and special tokens file
|
|
to a directory.
|
|
"""
|
|
if not os.path.isdir(vocab_path):
|
|
logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
|
|
return
|
|
out_vocab_file = os.path.join(vocab_path, VOCAB_NAME)
|
|
|
|
copyfile(self.vocab_file, out_vocab_file)
|
|
|
|
return (out_vocab_file,)
|