mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
[NumPy] Remove references to deprecated NumPy type aliases (#21022)
[NumPy] Remove references to deprecated NumPy type aliases. This change replaces references to a number of deprecated NumPy type aliases (np.bool, np.int, np.float, np.complex, np.object, np.str) with their recommended replacement (bool, int, float, complex, object, str). NumPy 1.24 drops the deprecated aliases, so we must remove uses before updating NumPy. Co-authored-by: Peter Hawkins <phawkins@google.com> Co-authored-by: Peter Hawkins <phawkins@google.com>
This commit is contained in:
parent
1d21471c78
commit
35a7052b61
@ -371,7 +371,7 @@ def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array:
|
||||
ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
|
||||
max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx]) # find the chunk with the largest key,
|
||||
ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0] # then make sure it goes first.
|
||||
sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
|
||||
sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=int)
|
||||
sort_idx = np.concatenate((ck_idx[0], sort_idx))
|
||||
return sort_idx
|
||||
|
||||
|
@ -132,7 +132,7 @@ class Plot:
|
||||
if self.args.plot_along_batch:
|
||||
y_axis_array = np.asarray(
|
||||
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results],
|
||||
dtype=np.int,
|
||||
dtype=int,
|
||||
)
|
||||
else:
|
||||
y_axis_array = np.asarray(
|
||||
@ -144,7 +144,7 @@ class Plot:
|
||||
("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz")
|
||||
)
|
||||
|
||||
x_axis_array = np.asarray(x_axis_array, np.int)[: len(y_axis_array)]
|
||||
x_axis_array = np.asarray(x_axis_array, int)[: len(y_axis_array)]
|
||||
plt.scatter(
|
||||
x_axis_array, y_axis_array, label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}"
|
||||
)
|
||||
|
@ -353,7 +353,7 @@ def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array:
|
||||
ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
|
||||
max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx]) # find the chunk with the largest key,
|
||||
ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0] # then make sure it goes first.
|
||||
sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
|
||||
sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=int)
|
||||
sort_idx = np.concatenate((ck_idx[0], sort_idx))
|
||||
return sort_idx
|
||||
|
||||
|
@ -132,7 +132,7 @@ class Plot:
|
||||
if self.args.plot_along_batch:
|
||||
y_axis_array = np.asarray(
|
||||
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results],
|
||||
dtype=np.int,
|
||||
dtype=int,
|
||||
)
|
||||
else:
|
||||
y_axis_array = np.asarray(
|
||||
@ -144,7 +144,7 @@ class Plot:
|
||||
("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz")
|
||||
)
|
||||
|
||||
x_axis_array = np.asarray(x_axis_array, np.int)[: len(y_axis_array)]
|
||||
x_axis_array = np.asarray(x_axis_array, int)[: len(y_axis_array)]
|
||||
plt.scatter(
|
||||
x_axis_array, y_axis_array, label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}"
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user