mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

[NumPy] Remove references to deprecated NumPy type aliases. This change replaces references to a number of deprecated NumPy type aliases (np.bool, np.int, np.float, np.complex, np.object, np.str) with their recommended replacement (bool, int, float, complex, object, str). NumPy 1.24 drops the deprecated aliases, so we must remove uses before updating NumPy. Co-authored-by: Peter Hawkins <phawkins@google.com> Co-authored-by: Peter Hawkins <phawkins@google.com>
179 lines
6.3 KiB
Python
179 lines
6.3 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import csv
|
|
from collections import defaultdict
|
|
from dataclasses import dataclass, field
|
|
from typing import List, Optional
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from matplotlib.ticker import ScalarFormatter
|
|
|
|
from transformers import HfArgumentParser
|
|
|
|
|
|
def list_field(default=None, metadata=None):
|
|
return field(default_factory=lambda: default, metadata=metadata)
|
|
|
|
|
|
@dataclass
|
|
class PlotArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
|
"""
|
|
|
|
csv_file: str = field(
|
|
metadata={"help": "The csv file to plot."},
|
|
)
|
|
plot_along_batch: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."},
|
|
)
|
|
is_time: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."},
|
|
)
|
|
no_log_scale: bool = field(
|
|
default=False,
|
|
metadata={"help": "Disable logarithmic scale when plotting"},
|
|
)
|
|
is_train: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
|
|
},
|
|
)
|
|
figure_png_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."},
|
|
)
|
|
short_model_names: Optional[List[str]] = list_field(
|
|
default=None, metadata={"help": "List of model names that are used instead of the ones in the csv file."}
|
|
)
|
|
|
|
|
|
def can_convert_to_int(string):
|
|
try:
|
|
int(string)
|
|
return True
|
|
except ValueError:
|
|
return False
|
|
|
|
|
|
def can_convert_to_float(string):
|
|
try:
|
|
float(string)
|
|
return True
|
|
except ValueError:
|
|
return False
|
|
|
|
|
|
class Plot:
|
|
def __init__(self, args):
|
|
self.args = args
|
|
self.result_dict = defaultdict(lambda: dict(bsz=[], seq_len=[], result={}))
|
|
|
|
with open(self.args.csv_file, newline="") as csv_file:
|
|
reader = csv.DictReader(csv_file)
|
|
for row in reader:
|
|
model_name = row["model"]
|
|
self.result_dict[model_name]["bsz"].append(int(row["batch_size"]))
|
|
self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"]))
|
|
if can_convert_to_int(row["result"]):
|
|
# value is not None
|
|
self.result_dict[model_name]["result"][
|
|
(int(row["batch_size"]), int(row["sequence_length"]))
|
|
] = int(row["result"])
|
|
elif can_convert_to_float(row["result"]):
|
|
# value is not None
|
|
self.result_dict[model_name]["result"][
|
|
(int(row["batch_size"]), int(row["sequence_length"]))
|
|
] = float(row["result"])
|
|
|
|
def plot(self):
|
|
fig, ax = plt.subplots()
|
|
title_str = "Time usage" if self.args.is_time else "Memory usage"
|
|
title_str = title_str + " for training" if self.args.is_train else title_str + " for inference"
|
|
|
|
if not self.args.no_log_scale:
|
|
# set logarithm scales
|
|
ax.set_xscale("log")
|
|
ax.set_yscale("log")
|
|
|
|
for axis in [ax.xaxis, ax.yaxis]:
|
|
axis.set_major_formatter(ScalarFormatter())
|
|
|
|
for model_name_idx, model_name in enumerate(self.result_dict.keys()):
|
|
batch_sizes = sorted(list(set(self.result_dict[model_name]["bsz"])))
|
|
sequence_lengths = sorted(list(set(self.result_dict[model_name]["seq_len"])))
|
|
results = self.result_dict[model_name]["result"]
|
|
|
|
(x_axis_array, inner_loop_array) = (
|
|
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
|
|
)
|
|
|
|
label_model_name = (
|
|
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
|
|
)
|
|
|
|
for inner_loop_value in inner_loop_array:
|
|
if self.args.plot_along_batch:
|
|
y_axis_array = np.asarray(
|
|
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results],
|
|
dtype=int,
|
|
)
|
|
else:
|
|
y_axis_array = np.asarray(
|
|
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results],
|
|
dtype=np.float32,
|
|
)
|
|
|
|
(x_axis_label, inner_loop_label) = (
|
|
("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz")
|
|
)
|
|
|
|
x_axis_array = np.asarray(x_axis_array, int)[: len(y_axis_array)]
|
|
plt.scatter(
|
|
x_axis_array, y_axis_array, label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}"
|
|
)
|
|
plt.plot(x_axis_array, y_axis_array, "--")
|
|
|
|
title_str += f" {label_model_name} vs."
|
|
|
|
title_str = title_str[:-4]
|
|
y_axis_label = "Time in s" if self.args.is_time else "Memory in MB"
|
|
|
|
# plot
|
|
plt.title(title_str)
|
|
plt.xlabel(x_axis_label)
|
|
plt.ylabel(y_axis_label)
|
|
plt.legend()
|
|
|
|
if self.args.figure_png_file is not None:
|
|
plt.savefig(self.args.figure_png_file)
|
|
else:
|
|
plt.show()
|
|
|
|
|
|
def main():
|
|
parser = HfArgumentParser(PlotArguments)
|
|
plot_args = parser.parse_args_into_dataclasses()[0]
|
|
plot = Plot(args=plot_args)
|
|
plot.plot()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|