mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 03:01:07 +06:00
enable tp on CPU (#36299)
* enable tp on CPU Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * get rank from cpu Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * update Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * enable TP tests Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix comment Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * em print Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix model id Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix conflict Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix index and add doc Signed-off-by: jiqing-feng <jiqing.feng@intel.com> --------- Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
This commit is contained in:
parent
4705b04c74
commit
286393fbb1
@ -44,11 +44,6 @@ import os
|
|||||||
import torch
|
import torch
|
||||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
# initialize distributed environment
|
|
||||||
rank = int(os.environ["RANK"])
|
|
||||||
device = torch.device(f"cuda:{rank}")
|
|
||||||
torch.cuda.set_device(device)
|
|
||||||
torch.distributed.init_process_group("nccl", device_id=device)
|
|
||||||
|
|
||||||
# enable tensor parallelism
|
# enable tensor parallelism
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
@ -59,7 +54,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|||||||
# prepare input tokens
|
# prepare input tokens
|
||||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
||||||
prompt = "Can I help"
|
prompt = "Can I help"
|
||||||
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
||||||
|
|
||||||
# distributed run
|
# distributed run
|
||||||
outputs = model(inputs)
|
outputs = model(inputs)
|
||||||
@ -71,6 +66,13 @@ Launch the inference script above on [torchrun](https://pytorch.org/docs/stable/
|
|||||||
torchrun --nproc-per-node 4 demo.py
|
torchrun --nproc-per-node 4 demo.py
|
||||||
```
|
```
|
||||||
|
|
||||||
|
For CPU, please binding different socket on each rank. For example, if you are using Intel 4th Gen Xeon:
|
||||||
|
```bash
|
||||||
|
export OMP_NUM_THREADS=56
|
||||||
|
numactl -C 0-55 -m 0 torchrun --nnodes=2 --node_rank=0 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & numactl -C 56-111 -m 1 torchrun --nnodes=2 --node_rank=1 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & wait
|
||||||
|
```
|
||||||
|
The CPU benchmark data will be released soon.
|
||||||
|
|
||||||
You can benefit from considerable speed ups for inference, especially for inputs with large batch size or long sequences.
|
You can benefit from considerable speed ups for inference, especially for inputs with large batch size or long sequences.
|
||||||
|
|
||||||
For a single forward pass on [Llama](./model_doc/llama) with a sequence length of 512 and various batch sizes, you can expect the following speed ups.
|
For a single forward pass on [Llama](./model_doc/llama) with a sequence length of 512 and various batch sizes, you can expect the following speed ups.
|
||||||
|
@ -774,6 +774,7 @@ def _load_state_dict_into_meta_model(
|
|||||||
"""
|
"""
|
||||||
tensor_device = "cpu"
|
tensor_device = "cpu"
|
||||||
if device_map is not None and device_map.get("", None) is not None:
|
if device_map is not None and device_map.get("", None) is not None:
|
||||||
|
if device_map[""] not in ("cpu", torch.device("cpu")):
|
||||||
tensor_device = device_map[""].index if isinstance(device_map[""], torch.device) else device_map[""]
|
tensor_device = device_map[""].index if isinstance(device_map[""], torch.device) else device_map[""]
|
||||||
if device_map is not None:
|
if device_map is not None:
|
||||||
device_map_regex = "|".join([re.escape(k) for k in sorted(device_map.keys(), reverse=True)])
|
device_map_regex = "|".join([re.escape(k) for k in sorted(device_map.keys(), reverse=True)])
|
||||||
@ -4110,24 +4111,34 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
|||||||
if tp_plan is not None:
|
if tp_plan is not None:
|
||||||
if not is_torch_greater_or_equal("2.5"):
|
if not is_torch_greater_or_equal("2.5"):
|
||||||
raise EnvironmentError("tensor parallel is only supported for `torch>=2.5`.")
|
raise EnvironmentError("tensor parallel is only supported for `torch>=2.5`.")
|
||||||
|
|
||||||
|
# Detect the accelerator on the machine. If no accelerator is available, it returns CPU.
|
||||||
|
device_type = torch._C._get_accelerator().type
|
||||||
|
|
||||||
if not torch.distributed.is_initialized():
|
if not torch.distributed.is_initialized():
|
||||||
try:
|
try:
|
||||||
rank = int(os.environ["RANK"])
|
rank = int(os.environ["RANK"])
|
||||||
world_size = int(os.environ["WORLD_SIZE"])
|
world_size = int(os.environ["WORLD_SIZE"])
|
||||||
|
if device_type == "cuda":
|
||||||
torch.distributed.init_process_group(
|
torch.distributed.init_process_group(
|
||||||
"nccl", rank=rank, world_size=world_size, init_method="env://"
|
"nccl", rank=rank, world_size=world_size, init_method="env://"
|
||||||
)
|
)
|
||||||
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
|
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
|
||||||
|
elif device_type == "cpu":
|
||||||
|
cpu_backend = "ccl" if int(os.environ.get("CCL_WORKER_COUNT", 0)) else "gloo"
|
||||||
|
torch.distributed.init_process_group(cpu_backend, rank=rank, world_size=world_size)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise EnvironmentError(
|
raise EnvironmentError(
|
||||||
"We tried to initialize torch.distributed for you, but it failed, make"
|
"We tried to initialize torch.distributed for you, but it failed, make"
|
||||||
"sure you init torch distributed in your script to use `tp_plan='auto'`"
|
"sure you init torch distributed in your script to use `tp_plan='auto'`"
|
||||||
) from e
|
) from e
|
||||||
|
|
||||||
# Detect the accelerator on the machine. If no accelerator is available, it returns CPU.
|
# Get device with index assuming equal number of devices per host
|
||||||
device_type = torch._C._get_accelerator().type
|
index = None if device_type == "cpu" else torch.cuda.current_device()
|
||||||
tp_device = torch.device(device_type, torch.cuda.current_device())
|
tp_device = torch.device(device_type, index)
|
||||||
if tp_device.index > 0:
|
|
||||||
|
if index is not None and index > 0:
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
sys.stdout = open(os.devnull, "w")
|
sys.stdout = open(os.devnull, "w")
|
||||||
|
@ -12,18 +12,13 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import os
|
|
||||||
import subprocess
|
import subprocess
|
||||||
import tempfile
|
import tempfile
|
||||||
import textwrap
|
import textwrap
|
||||||
|
|
||||||
# TORCH_LOGS=+dtensor CUDA_LAUNCH_BLOCKING=1 TORCH_USE_CUDA_DSA=1 PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
|
|
||||||
from transformers import is_torch_available
|
from transformers import is_torch_available
|
||||||
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
||||||
from transformers.models.llama.modeling_llama import LlamaModel
|
|
||||||
from transformers.testing_utils import (
|
from transformers.testing_utils import (
|
||||||
TestCasePlus,
|
TestCasePlus,
|
||||||
execute_subprocess_async,
|
|
||||||
get_torch_dist_unique_port,
|
get_torch_dist_unique_port,
|
||||||
require_torch_multi_gpu,
|
require_torch_multi_gpu,
|
||||||
)
|
)
|
||||||
@ -33,7 +28,10 @@ if is_torch_available():
|
|||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
# RUN_SLOW=1 pytest -sv tests/tensor_parallel/test_tensor_parallel.py
|
||||||
class TestTensorParallel(TestCasePlus):
|
class TestTensorParallel(TestCasePlus):
|
||||||
|
nproc_per_node = 2
|
||||||
|
|
||||||
def torchrun(self, script: str):
|
def torchrun(self, script: str):
|
||||||
"""Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary."""
|
"""Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary."""
|
||||||
with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp:
|
with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp:
|
||||||
@ -41,7 +39,7 @@ class TestTensorParallel(TestCasePlus):
|
|||||||
tmp.flush()
|
tmp.flush()
|
||||||
tmp.seek(0)
|
tmp.seek(0)
|
||||||
cmd = (
|
cmd = (
|
||||||
f"torchrun --nproc_per_node {torch.cuda.device_count()} --master_port {get_torch_dist_unique_port()} {tmp.name}"
|
f"torchrun --nproc_per_node {self.nproc_per_node} --master_port {get_torch_dist_unique_port()} {tmp.name}"
|
||||||
).split()
|
).split()
|
||||||
|
|
||||||
# Note that the subprocess will be waited for here, and raise an error if not successful
|
# Note that the subprocess will be waited for here, and raise an error if not successful
|
||||||
@ -50,44 +48,39 @@ class TestTensorParallel(TestCasePlus):
|
|||||||
except subprocess.CalledProcessError as e:
|
except subprocess.CalledProcessError as e:
|
||||||
raise Exception(f"The following error was captured: {e.stderr}")
|
raise Exception(f"The following error was captured: {e.stderr}")
|
||||||
|
|
||||||
@require_torch_multi_gpu
|
def test_model_forward(self):
|
||||||
def test_tp(self):
|
|
||||||
distributed_args = f"""--nproc_per_node={torch.cuda.device_count()}
|
|
||||||
--master_port={get_torch_dist_unique_port()}
|
|
||||||
{self.test_file_dir}/test_tp.py
|
|
||||||
""".split()
|
|
||||||
output_dir = self.get_auto_remove_tmp_dir()
|
|
||||||
args = f"--output_dir {output_dir} --report_to none".split()
|
|
||||||
cmd = ["torchrun"] + distributed_args + args
|
|
||||||
print(cmd)
|
|
||||||
execute_subprocess_async(cmd, env=self.get_env())
|
|
||||||
# successful return here == success - any errors would have caused an error in the sub-call
|
|
||||||
|
|
||||||
@require_torch_multi_gpu
|
|
||||||
def test_loading_memory_consumption(self):
|
|
||||||
script_to_run = textwrap.dedent(
|
script_to_run = textwrap.dedent(
|
||||||
"""
|
"""
|
||||||
import torch
|
import torch
|
||||||
import os
|
import os
|
||||||
from transformers import AutoModelForCausalLM
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
model_id = "JackFram/llama-68m"
|
||||||
|
|
||||||
rank = int(os.environ["RANK"])
|
rank = int(os.environ["RANK"])
|
||||||
world_size = int(os.environ["WORLD_SIZE"])
|
world_size = int(os.environ["WORLD_SIZE"])
|
||||||
device = torch.device(f"cuda:{rank}")
|
|
||||||
torch.distributed.init_process_group("nccl", device_id=device)
|
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, tp_plan="auto")
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", tp_plan="auto")
|
||||||
torch.distributed.barrier()
|
torch.distributed.barrier()
|
||||||
|
|
||||||
# The expected model memory footprint. We add 1 as not all the modules are split (e.g. the embeddings)
|
has_dtensor = 0
|
||||||
expected_model_memory_per_device = (16 / world_size) + 1
|
for name, parameter in model.named_parameters():
|
||||||
overhead_factor = 1.2
|
if isinstance(parameter.data, torch.distributed.tensor.DTensor):
|
||||||
|
has_dtensor = 1
|
||||||
|
break
|
||||||
|
|
||||||
# Check that we do not use more than the expected sharded size during initialization
|
assert has_dtensor == 1, "TP model must has DTensor"
|
||||||
if torch.cuda.max_memory_allocated(device) / 1024**3 > expected_model_memory_per_device * overhead_factor:
|
|
||||||
raise ValueError("Loading the model used more than the expected fraction of model size per device")
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||||
|
prompt = "Can I help"
|
||||||
|
|
||||||
|
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
||||||
|
outputs = model(inputs)
|
||||||
|
|
||||||
|
next_token_logits = outputs[0][:, -1, :]
|
||||||
|
next_token = torch.argmax(next_token_logits, dim=-1)
|
||||||
|
response = tokenizer.decode(next_token)
|
||||||
|
assert response == "with"
|
||||||
|
|
||||||
torch.distributed.barrier()
|
torch.distributed.barrier()
|
||||||
torch.distributed.destroy_process_group()
|
torch.distributed.destroy_process_group()
|
||||||
@ -96,69 +89,6 @@ class TestTensorParallel(TestCasePlus):
|
|||||||
self.torchrun(script_to_run)
|
self.torchrun(script_to_run)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
@require_torch_multi_gpu
|
||||||
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
|
class TestTensorParallelCuda(TestTensorParallel):
|
||||||
# CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/tp/test_tp.py
|
nproc_per_node = torch.cuda.device_count()
|
||||||
# or
|
|
||||||
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
|
|
||||||
|
|
||||||
if not is_torch_available():
|
|
||||||
exit(0)
|
|
||||||
|
|
||||||
# Test settings
|
|
||||||
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
||||||
bs = 1
|
|
||||||
seqlen = 4096
|
|
||||||
# Get distributed settings
|
|
||||||
rank = int(os.environ["RANK"])
|
|
||||||
world_size = int(os.environ["WORLD_SIZE"])
|
|
||||||
|
|
||||||
# Initialize distributed
|
|
||||||
device = torch.device(f"cuda:{rank}")
|
|
||||||
torch.distributed.init_process_group("nccl", device_id=device)
|
|
||||||
device_mesh = torch.distributed.init_device_mesh("cuda", (world_size,))
|
|
||||||
|
|
||||||
# Get model config
|
|
||||||
config = LlamaConfig.from_pretrained(model_id)
|
|
||||||
config.hidden_size = 2048
|
|
||||||
config.attention_bias = False
|
|
||||||
# Instantiate model
|
|
||||||
with device:
|
|
||||||
model = LlamaModel(config).to(dtype=torch.float16)
|
|
||||||
|
|
||||||
model.eval()
|
|
||||||
# Tensor Parallel
|
|
||||||
if world_size > 1:
|
|
||||||
model.tensor_parallel(device_mesh)
|
|
||||||
# Run model
|
|
||||||
|
|
||||||
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
|
|
||||||
|
|
||||||
# Test cuda graphing explicitly
|
|
||||||
with torch.cuda.device(device):
|
|
||||||
print("Cuda graphing")
|
|
||||||
with torch.no_grad():
|
|
||||||
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
|
|
||||||
# CUDA Graph setup
|
|
||||||
s = torch.cuda.Stream(device=device)
|
|
||||||
s.wait_stream(torch.cuda.current_stream())
|
|
||||||
with torch.cuda.stream(s):
|
|
||||||
for i in range(3):
|
|
||||||
out = model(inputs)
|
|
||||||
torch.cuda.current_stream().wait_stream(s)
|
|
||||||
g = torch.cuda.CUDAGraph()
|
|
||||||
with torch.cuda.graph(g):
|
|
||||||
out = model(inputs)
|
|
||||||
|
|
||||||
for _ in range(2):
|
|
||||||
g.replay()
|
|
||||||
s.synchronize()
|
|
||||||
|
|
||||||
assert out.last_hidden_state.shape == torch.Size([bs, seqlen, config.hidden_size])
|
|
||||||
|
|
||||||
# Test compile
|
|
||||||
with torch.no_grad():
|
|
||||||
out = model(inputs)
|
|
||||||
model.forward = torch.compile(model.forward, mode="reduce-overhead")
|
|
||||||
out = model(inputs)
|
|
||||||
out = model(inputs)
|
|
||||||
|
Loading…
Reference in New Issue
Block a user